__init__.py 63.7 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2013 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   kcore_decomposition
52
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
53
   is_DAG
54
   is_planar
55
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
56
   edge_reciprocity
57
58
59

Contents
++++++++
60

61
62
"""

63
64
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
65
from .. dl_import import dl_import
66
dl_import("from . import libgraph_tool_topology")
67

68
from .. import _prop, Vector_int32_t, _check_prop_writable, \
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
Tiago Peixoto's avatar
Tiago Peixoto committed
70
     libcore, _get_rng, _degree
71
import random, sys, numpy
72
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
73
           "max_cardinality_matching", "max_independent_vertex_set",
74
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
75
           "topological_sort", "transitive_closure", "tsp_tour",
76
77
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
80
           "label_out_component", "kcore_decomposition", "shortest_distance",
           "shortest_path", "pseudo_diameter", "is_bipartite", "is_DAG",
           "is_planar", "make_maximal_planar", "similarity", "edge_reciprocity"]
81
82
83
84
85
86
87
88
89
90


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
91
        Second graph to be compared.
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
118
119
120
121
122
123
124
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

125
126
127
128
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
Tiago Peixoto's avatar
Tiago Peixoto committed
129
130
    >>> gt.random_rewire(u)
    21
131
    >>> gt.similarity(u, g)
Tiago Peixoto's avatar
Tiago Peixoto committed
132
    0.03
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
149

Tiago Peixoto's avatar
Tiago Peixoto committed
150

151
def isomorphism(g1, g2, isomap=False):
152
153
154
155
156
157
158
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
159
160
161
162
163
164
165
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

166
167
168
169
170
171
172
173
174
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

175
    """
176
177
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
178
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
179
                             _prop("v", g1, imap))
180
181
182
183
184
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
185

186
def subgraph_isomorphism(sub, g, max_n=0, random=False):
187
    r"""
188
189
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
190

191

Tiago Peixoto's avatar
Tiago Peixoto committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
    max_n : int (optional, default: 0)
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
    random : bool (optional, default: False)
        If `True`, the vertices of `g` are indexed in random order before
        the search.

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.
    edge_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing edge property map objects which indicate different
        isomorphism mappings. The property maps edges in `sub` to the
        corresponding edge index in `g`.

    Notes
    -----
    The algorithm used is described in [ullmann-algorithm-1976]_. It has a
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
222
223
224

    Examples
    --------
225
226
227
228
229
230
231
232
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(44)
       gt.seed_rng(44)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
233
    >>> g = gt.random_graph(30, lambda: (poisson(6.1), poisson(6.1)))
234
    >>> sub = gt.random_graph(10, lambda: (poisson(1.9), poisson(1.9)))
235
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
236
    >>> print(len(vm))
Tiago Peixoto's avatar
Tiago Peixoto committed
237
    35
238
    >>> for i in range(len(vm)):
239
240
241
242
243
244
245
246
247
248
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
249
250
251
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
252
    ...               output="subgraph-iso-embed.pdf")
253
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
254
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
255
256
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
257
258
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
259

260

Tiago Peixoto's avatar
Tiago Peixoto committed
261
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
262
263
264

    References
    ----------
265
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
266
       isomorphism", Journal of the ACM 23 (1): 31-42, 1976, :doi:`10.1145/321921.321925`
267
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
268
269

    """
270
271
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
272
273
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
274
275
    vlabels=(None, None)
    elabels=(None, None)
276
277
    vmaps = []
    emaps = []
278
    if random:
279
        rng = _get_rng()
280
    else:
281
        rng = libcore.rng_t()
282
283
284
285
286
287
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
288
                                vmaps, emaps, max_n, rng)
289
    for i in range(len(vmaps)):
290
291
292
293
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
294

295
296
297
298
299
300
301
302
303
304
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
305
    `sub`.
306
    """
307
    if vmask is None:
308
        vmask = g.new_vertex_property("bool")
309
    if emask is None:
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
324

Tiago Peixoto's avatar
Tiago Peixoto committed
325

326
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
327
328
329
330
331
332
333
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
334
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
335
336
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
337
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
338
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
339
        is used. Otherwise, Kruskal's algorithm is used.
340
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
356
357
358
359
360
361
362
363
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
364
365
366
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
367
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
368
    >>> tree = gt.min_spanning_tree(g, weights=weight)
369
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
370
371
    <...>
    >>> g.set_edge_filter(tree)
372
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
373
374
375
    <...>


376
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
377
        :width: 400px
378
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
379
        :width: 400px
380
381

    *Left:* Original graph, *Right:* The minimum spanning tree.
382
383
384
385
386

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
387
388
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
389
390
391
392
393
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
394
    if tree_map is None:
395
396
397
398
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
414
    return tree_map
415

Tiago Peixoto's avatar
Tiago Peixoto committed
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
446
447
448
449
450
451
452
453
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
454
455
456
457
458
459
460
461
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
462
    >>> gt.graph_draw(g, pos=pos, output="triang_random_span_tree.pdf")
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    <...>


    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
493
494
495
    u = GraphView(g, vfilt=l)
    if u.num_vertices() != g.num_vertices():
        raise ValueError("There must be a path from all vertices to the root vertex: %d" % int(root) )
496
497
498
499

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
500
                             _prop("e", g, tree_map), _get_rng())
501
502
503
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
531
532
533
534
535
536
537
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
538
539
540
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
541
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
542
    >>> dom = gt.dominator_tree(g, root[0])
543
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
544
    [ 0  0  0  0  0  0 62  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
545
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Tiago Peixoto's avatar
Tiago Peixoto committed
546
547
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
548
549
550

    References
    ----------
551
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
552
553

    """
554
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
555
556
557
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
558
559
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
560
        raise ValueError("dominator tree requires a directed graph.")
561
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
562
563
564
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
565

Tiago Peixoto's avatar
Tiago Peixoto committed
566

567
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
582
583
584
585
586
587
588
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
589
590
591
592
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
593
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
594
595
    [ 1 14  2  7 17  0  3  4  5  6  8  9 22 10 11 12 13 16 23 27 15 18 19 20 21
     24 25 26 28 29]
Tiago Peixoto's avatar
Tiago Peixoto committed
596
597
598

    References
    ----------
599
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
600
601
602
603
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

604
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
605
606
607
608
609
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
    return topological_order.a.copy()
610

Tiago Peixoto's avatar
Tiago Peixoto committed
611

612
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
613
614
615
616
617
618
619
620
621
622
623
624
625
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
626
627
628
629
630
631
632
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
633
634
635
636
637
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
638
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
639
640
641
642
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

643
644
645
646
647
648
649
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
650

651
def label_components(g, vprop=None, directed=None, attractors=False):
652
    """
653
    Label the components to which each vertex in the graph belongs. If the
654
655
    graph is directed, it finds the strongly connected components.

656
657
658
    A property map with the component labels is returned, together with an
    histogram of component labels.

659
660
    Parameters
    ----------
661
    g : :class:`~graph_tool.Graph`
662
        Graph to be used.
663
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
664
665
        Vertex property to store the component labels. If none is supplied, one
        is created.
666
    directed : bool (optional, default: ``None``)
667
668
        Treat graph as directed or not, independently of its actual
        directionality.
669
670
671
672
    attractors : bool (optional, default: ``False``)
        If ``True``, and the graph is directed, an additional array with Boolean
        values is returned, specifying if the strongly connected components are
        attractors or not.
673
674
675

    Returns
    -------
676
    comp : :class:`~graph_tool.PropertyMap`
677
        Vertex property map with component labels.
678
679
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
680
681
682
683
    is_attractor : :class:`~numpy.ndarray`
        A Boolean array specifying if the strongly connected components are
        attractors or not. This returned only if ``attractors == True``, and the
        graph is directed.
684
685
686
687
688
689

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

690
    The algorithm runs in :math:`O(V + E)` time.
691
692
693

    Examples
    --------
694
695
696
697
698
699
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

700
701
    >>> g = gt.random_graph(100, lambda: (poisson(2), poisson(2)))
    >>> comp, hist, is_attractor = gt.label_components(g, attractors=True)
702
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
703
704
705
706
    [14 15 14 14 14  5 14 14 18 14 14  8 14 14 13 14 14 21 14 14  7 23 10 14 14
     14 24  4 14 14  0 14 14 14 25 14 14  1 14 26 14 19  9 14 14  3 14 14 27 28
     29 14 14  6 14 14 14 30 14 14 20 14  2 14 22 33 34 14 14 14 35 14 14 16 14
     11 36 37 14 14 31 14 14 17 14 14 14 14 14  0 14 38 39 32 14 12 14 40 14 14]
707
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
708
709
    [ 2  1  1  1  1  1  1  1  1  1  1  1  1  1 59  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1]
710
    >>> print(is_attractor)
Tiago Peixoto's avatar
Tiago Peixoto committed
711
712
    [ True  True  True False False False  True  True False False False False
      True  True False False False False False False False False  True False
713
     False False False False False False False False False False False False
Tiago Peixoto's avatar
Tiago Peixoto committed
714
     False False False False False]
715
716
    """

717
    if vprop is None:
718
719
720
721
722
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

723
724
    if directed is not None:
        g = GraphView(g, directed=directed)
725

726
727
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
728
729
730
731
732
733
734
735
736

    if attractors and g.is_directed() and directed != False:
        is_attractor = numpy.ones(len(hist), dtype="bool")
        libgraph_tool_topology.\
               label_attractors(g._Graph__graph, _prop("v", g, vprop),
                                is_attractor)
        return vprop, hist, is_attractor
    else:
        return vprop, hist
737
738
739
740


def label_largest_component(g, directed=None):
    """
741
742
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
743
744
745
746
747
748
749
750
751
752
753
754
755
756

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
757
         Boolean vertex property map which labels the largest component.
758
759
760
761
762
763
764

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
765
766
767
768
769
770
771
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

772
773
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
774
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
775
776
777
    [1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
     0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
     0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
778
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
779
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
780
    16
781
782
783
784
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
785
786
787
788
789
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
790
    return label
791

Tiago Peixoto's avatar
Tiago Peixoto committed
792

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
816
817
818
819
820
821
822
823
824
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
825
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
826
827
828
    [1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0
     1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0]
829
830
831

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
832
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
833
    ...                            g.vertex(1))
834
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
835
836
837
    [1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0
     0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1
     1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0]
838
839
840
841
842
843
844
845
846
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


847
def label_biconnected_components(g, eprop=None, vprop=None):
848
849
850
851
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

852
853
854
855
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
899
900
901
902
903
904
905
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
906
    >>> g = gt.random_graph(100, lambda: poisson(2), directed=False)
907
    >>> comp, art, hist = gt.label_biconnected_components(g)
908
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
909
910
911
912
    [51 51 51 51 51 51 11 52 51 51 44 42 41 45 49 23 19 51 51 32 38 51 24 37 51
     51 51 10  8 51 20 43 51 51 51 51 51 47 46 51 51 13 14 51 51 51 51 33 30 51
      1 21 51 51 51 35 36  6 51 26 27  7 12  4  3 29 28 51 51 51 31 51 51  0 39
     51 51 51 34 40 51 51  9 17 51 51 18 15 22  2 16 50  5 48 51 51 53 51 51 25]
913
    >>> print(art.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
914
915
916
    [1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0
     0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1
     1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0]
917
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
918
919
920
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
      1 47  1  1]
921
    """
922

923
    if vprop is None:
924
        vprop = g.new_vertex_property("bool")
925
    if eprop is None:
926
927
928
929
930
931
932
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

933
934
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
935
936
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
937
    return eprop, vprop, hist
938

Tiago Peixoto's avatar
Tiago Peixoto committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
def kcore_decomposition(g, deg="out", vprop=None):
    """
    Perform a k-core decomposition of the given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    deg : string
        Degree to be used for the decomposition. It can be either "in", "out" or
        "total", for in-, out-, or total degree of the vertices.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex property to store the decomposition. If ``None`` is supplied,
        one is created.

    Returns
    -------
    kval : :class:`~graph_tool.PropertyMap`
        Vertex property map with the k-core decomposition, i.e. a given vertex v
        belongs to the ``kval[v]``-core.

    Notes
    -----

    The k-core is a maximal set of vertices such that its induced subgraph only
    contains vertices with degree larger than or equal to k.

    This algorithm is described in [batagelk-algorithm]_ and runs in :math:`O(V + E)`
    time.

    Examples
    --------

    >>> g = gt.collection.data["netscience"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> kcore = gt.kcore_decomposition(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.png")

    .. figure:: netsci-kcore.*
        :align: center

        K-core decomposition of a network of network scientists.

    References
    ----------
    .. [k-core] http://en.wikipedia.org/wiki/Degeneracy_%28graph_theory%29
    .. [batagelk-algorithm] V. Batagelj, M. Zaversnik, "An O(m) Algorithm for
       Cores Decomposition of Networks", 2003, :arxiv:`cs/0310049`

    """

    if vprop is None:
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    if deg not in ["in", "out", "total"]:
        raise ValueError("invalid degree: " + str(deg))

    if g.is_directed():
        if deg == "out":
            g = GraphView(g, reversed=True)
        if deg == "total":
            g = GraphView(g, directed=False)

    libgraph_tool_topology.\
               kcore_decomposition(g._Graph__graph, _prop("v", g, vprop),
                                   _degree(g, deg))
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1015

1016
def shortest_distance(g, source=None, target=None, weights=None, max_dist=None,
1017
1018
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
1019
    """
1020
1021
1022
    Calculate the distance from a source to a target vertex, or to of all
    vertices from a given source, or the all pairs shortest paths, if the source
    is not specified.
1023
1024
1025
1026
1027
1028

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1029
        Source vertex of the search. If unspecified, the all pairs shortest
1030
        distances are computed.
1031
1032
1033
    target : :class:`~graph_tool.Vertex` (optional, default: None)
        Target vertex of the search. If unspecified, the distance to all
        vertices from the source will be computed.
1034
1035
1036
1037
1038
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
Tiago Peixoto's avatar
Tiago Peixoto committed
1039
        searched. This parameter has no effect if source is None.
1040
1041
1042
1043
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
1044
1045
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
1046
1047
1048
1049
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
1050
1051
1052
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
1075
1076
1077
1078
1079
1080
1081
1082
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
1083
1084
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
1085
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1103

1104
    >>> dist = gt.shortest_distance(g)
1105
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1123
1124
1125
1126
1127

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1128
1129
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1130
1131
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1132
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1133
1134
1135
1136
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

1137
    if weights is None:
1138
1139
1140
1141
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1142
1143
    if dist_map is None:
        if source is not None:
1144
1145
1146
1147
1148
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1149
    if source is not None:
1150
1151
1152
1153
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1154
    if max_dist is None:
1155
1156
        max_dist = 0

1157
    if directed is not None:
1158
1159
1160
        g.stash_filter(directed=True)
        g.set_directed(directed)

1161
1162
1163
    if target is None:
        target = -1

1164
    try:
1165
        if source is not None:
1166
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
1167
1168
1169
            libgraph_tool_topology.get_dists(g._Graph__graph,
                                             int(source),
                                             int(target),
1170
1171
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
1172
                                             _prop("v", g, pmap),
1173
1174
1175
1176
1177
1178
1179
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
1180
        if directed is not None:
1181
            g.pop_filter(directed=True)
1182
1183
1184
1185

    if source is not None and target != -1:
        dist_map = dist_map[target]

1186
    if source is not None and pred_map:
1187
1188
1189
1190
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
1202
    target : :class:`~graph_tool.Vertex`
1203
1204
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
1205
        The edge weights.
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1229
1230
1231
1232
1233
1234
1235
1236
1237
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(43)
       gt.seed_rng(43)

    >>> from numpy.random import poisson
    >>> g = gt.random_graph(300, lambda: (poisson(4), poisson(4)))
1238
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1239
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1240
    ['10', '131', '184', '265', '223', '11']
1241
    >>> print([str(e) for e in elist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1242
    ['(10, 131)', '(131, 184)', '(184, 265)', '(265, 223)', '(223, 11)']
1243
1244
1245
1246
1247

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1248
1249
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1250
1251
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1252
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1253
1254
    """

1255
    if pred_map is None:
1256
1257
        pred_map = shortest_distance(g, source, target,
                                     weights=weights,
Tiago Peixoto's avatar
Tiago Peixoto committed
1258
                                     pred_map=True)[1]
1259

1260
    if pred_map[target] == int(target):  # no path to target
1261
1262
1263
1264
1265
        return [], []

    vlist = [target]
    elist = []

1266
    if weights is not None:
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1280
                if weights is not None:
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1292

Tiago Peixoto's avatar
Tiago Peixoto committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1334
1335
1336
1337
1338
1339
1340
1341
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
1342
1343
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1344
    >>> print(dist)
Tiago Peixoto's avatar
Tiago Peixoto committed
1345
    9.0
1346
    >>> print(int(ends[0]), int(ends[1]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1347
    0 140
Tiago Peixoto's avatar
Tiago Peixoto committed
1348
1349
1350
1351
1352
1353
1354

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
1355
        source = g.vertex(0, use_index=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
def is_bipartite(g, partition=False):
    """
    Test if the graph is bipartite.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    partition : bool (optional, default: ``False``)
        If ``True``, return the two partitions in case the graph is bipartite.

    Returns
    -------
    is_bipartite : bool
        Whether or not the graph is bipartite.
    partition : :class:`~graph_tool.PropertyMap` (only if `partition=True`)
        A vertex property map with the graph partitioning (or `None`) if the
        graph is not bipartite.

    Notes
    -----

    An undirected graph is bipartite if one can partition its set of vertices
    into two sets, such that all edges go from one set to the other.

    This algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> is_bi, part = gt.is_bipartite(g, partition=True)
    >>> print(is_bi)
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1404
    >>> gt.graph_draw(g, vertex_fill_color=part, output_size=(300, 300), output="bipartite.pdf")
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    <...>

    .. figure:: bipartite.*
        :align: center

        Bipartition of a 2D lattice.

    References
    ----------
    .. [boost-bipartite] http://www.boost.org/libs/graph/doc/is_bipartite.html
    """

    if partition:
        part = g.new_vertex_property("bool")
    else:
        part = None
    g = GraphView(g, directed=False)
    is_bi = libgraph_tool_topology.is_bipartite(g._Graph__graph,
                                                _prop("v", g, part))
    if partition:
        return is_bi, part
    else:
        return is_bi


1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
1468
1469
1470
1471
1472
1473
1474
1475
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
1476
1477
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
1478
    >>> print(p)
1479
    True