__init__.py 53.3 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
47
   label_components
   label_biconnected_components
48
   label_largest_component
49
   label_out_component
50
   is_bipartite
51
   is_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
52
   edge_reciprocity
53
54
55

Contents
++++++++
56

57
58
"""

59
60
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
61
from .. dl_import import dl_import
62
dl_import("from . import libgraph_tool_topology")
63

64
from .. import _prop, Vector_int32_t, _check_prop_writable, \
65
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView
66
import random, sys, numpy
67
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
68
           "max_cardinality_matching", "max_independent_vertex_set",
69
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
70
71
72
73
74
           "topological_sort", "transitive_closure", "tsp_tour",
           "label_components", "label_largest_component",
           "label_biconnected_components", "label_out_component",
           "shortest_distance", "shortest_path", "pseudo_diameter",
           "is_bipartite", "is_planar", "similarity", "edge_reciprocity"]
75
76
77
78
79
80
81
82
83
84


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
85
        Second graph to be compared.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
    0.03333333333333333
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
137

Tiago Peixoto's avatar
Tiago Peixoto committed
138

139
def isomorphism(g1, g2, isomap=False):
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

158
    """
159
160
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
161
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
162
                             _prop("v", g1, imap))
163
164
165
166
167
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
168

169
def subgraph_isomorphism(sub, g, max_n=0, random=False):
170
    r"""
171
172
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
173

174
175
176
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

177
178
179
180
181
182
183
184
185
186
187
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
188
    >>> print(len(vm))
189
    102
190
    >>> for i in range(len(vm)):
191
192
193
194
195
196
197
198
199
200
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
201
202
203
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
204
    ...               output="subgraph-iso-embed.pdf")
205
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
206
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
207
208
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
209
210
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
211

212

Tiago Peixoto's avatar
Tiago Peixoto committed
213
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
214
215
216

    Notes
    -----
217
218
219
220
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
221
222
223

    References
    ----------
224
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
225
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
226
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
227
228
229
230

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
231
232
    vlabels=(None, None)
    elabels=(None, None)
233
234
    vmaps = []
    emaps = []
235
    if random:
236
        seed = numpy.random.randint(0, sys.maxsize)
237
238
    else:
        seed = 42
239
240
241
242
243
244
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
245
                                vmaps, emaps, max_n, seed)
246
    for i in range(len(vmaps)):
247
248
249
250
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
251

252
253
254
255
256
257
258
259
260
261
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
262
    `sub`.
263
    """
264
    if vmask is None:
265
        vmask = g.new_vertex_property("bool")
266
    if emask is None:
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
281

Tiago Peixoto's avatar
Tiago Peixoto committed
282

283
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
284
285
286
287
288
289
290
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
291
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
292
293
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
294
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
295
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
296
        is used. Otherwise, Kruskal's algorithm is used.
297
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
313
    >>> from numpy.random import seed, random
314
    >>> seed(42)
315
316
317
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
318
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
319
    >>> tree = gt.min_spanning_tree(g, weights=weight)
320
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
321
322
    <...>
    >>> g.set_edge_filter(tree)
323
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
324
325
326
    <...>


327
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
328
        :width: 400px
329
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
330
        :width: 400px
331
332

    *Left:* Original graph, *Right:* The minimum spanning tree.
333
334
335
336
337

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
338
339
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
340
341
342
343
344
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
345
    if tree_map is None:
346
347
348
349
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
365
    return tree_map
366

Tiago Peixoto's avatar
Tiago Peixoto committed
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
    <...>


    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
    g = GraphView(g, vfilt=l)

    seed = numpy.random.randint(0, sys.maxsize)
    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
                             _prop("e", g, tree_map), seed)
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
480
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
481
    >>> dom = gt.dominator_tree(g, root[0])
482
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
483
484
485
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
486
487
488

    References
    ----------
489
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
490
491

    """
492
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
493
494
495
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
496
497
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
498
        raise ValueError("dominator tree requires a directed graph.")
499
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
500
501
502
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
503

Tiago Peixoto's avatar
Tiago Peixoto committed
504

505
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
526
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
527
528
    [ 3 20  9 29 15  0 10 23  1  2 21  7  4 12 11  5 26 27  6  8 13 14 22 16 17
     28 18 19 24 25]
Tiago Peixoto's avatar
Tiago Peixoto committed
529
530
531

    References
    ----------
532
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
533
534
535
536
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

537
538
539
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
540
    return numpy.array(topological_order)
541

Tiago Peixoto's avatar
Tiago Peixoto committed
542

543
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
564
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
565
566
567
568
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

569
570
571
572
573
574
575
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
576

577
578
def label_components(g, vprop=None, directed=None):
    """
579
    Label the components to which each vertex in the graph belongs. If the
580
581
    graph is directed, it finds the strongly connected components.

582
583
584
    A property map with the component labels is returned, together with an
    histogram of component labels.

585
586
    Parameters
    ----------
587
    g : :class:`~graph_tool.Graph`
588
        Graph to be used.
589
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
590
591
592
593
594
595
596
597
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
598
    comp : :class:`~graph_tool.PropertyMap`
599
        Vertex property map with component labels.
600
601
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
602
603
604
605
606
607

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

608
    The algorithm runs in :math:`O(V + E)` time.
609
610
611

    Examples
    --------
612
613
614
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
615
    >>> comp, hist = gt.label_components(g)
616
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
617
618
619
    [0 0 0 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 0 1 2 0 1 0 0 1 0 2 0 2 1 0 2 0 0 0 0
     0 0 1 0 0 2 2 2 0 0 0 0 0 0 2 0 0 1 1 0 0 2 0 1 0 0 0 2 0 0 2 2 1 2 1 0 0
     2 0 0 1 2 1 2 2 0 0 0 0 0 2 0 0 0 1 1 0 0 0 1 1 2 2]
620
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
621
    [58 18 24]
622
623
    """

624
    if vprop is None:
625
626
627
628
629
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

630
631
    if directed is not None:
        g = GraphView(g, directed=directed)
632

633
634
635
636
637
638
639
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
640
641
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
642
643
644
645
646
647
648
649
650
651
652
653
654
655

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
656
         Boolean vertex property map which labels the largest component.
657
658
659
660
661
662
663
664
665
666
667

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
668
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
669
670
671
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
672
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
673
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
674
    31
675
676
677
678
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
679
680
681
682
683
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
684
    return label
685

Tiago Peixoto's avatar
Tiago Peixoto committed
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(0))
    >>> print(l.a)
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]

    The in-component can be obtained by reversing the graph.

    >>> l = gt.label_out_component(GraphView(g, reversed=True), g.vertex(0))
    >>> print(l.a)
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


735
def label_biconnected_components(g, eprop=None, vprop=None):
736
737
738
739
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

740
741
742
743
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
788
    >>> seed(43)
789
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
790
    >>> comp, art, hist = gt.label_biconnected_components(g)
791
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
792
793
794
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
     0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
     0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
795
    >>> print(art.a)
796
797
798
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
799
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
800
    [87 13]
801
    """
802

803
    if vprop is None:
804
        vprop = g.new_vertex_property("bool")
805
    if eprop is None:
806
807
808
809
810
811
812
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

813
814
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
815
816
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
817
    return eprop, vprop, hist
818

Tiago Peixoto's avatar
Tiago Peixoto committed
819

820
def shortest_distance(g, source=None, weights=None, max_dist=None,
821
822
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
823
824
825
826
827
828
829
830
831
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
832
        Source vertex of the search. If unspecified, the all pairs shortest
833
834
835
836
837
838
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
839
        are searched. This parameter has no effect if source is None.
840
841
842
843
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
844
845
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
846
847
848
849
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
850
851
852
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
879
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
897
    >>> dist = gt.shortest_distance(g)
898
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
916
917
918
919
920

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
921
922
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
923
924
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
925
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
926
927
928
929
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

930
    if weights is None:
931
932
933
934
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

935
936
    if dist_map is None:
        if source is not None:
937
938
939
940
941
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
942
    if source is not None:
943
944
945
946
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

947
    if max_dist is None:
948
949
        max_dist = 0

950
    if directed is not None:
951
952
953
954
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
955
        if source is not None:
956
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
957
958
959
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
960
                                             _prop("v", g, pmap),
961
962
963
964
965
966
967
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
968
        if directed is not None:
969
            g.pop_filter(directed=True)
970
    if source is not None and pred_map:
971
972
973
974
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
975

976
977
978
979
980
981
982
983
984
985
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
986
    target : :class:`~graph_tool.Vertex`
987
988
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
989
        The edge weights.
990
991
992
993
994
995
996
997
998
999
1000
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.
For faster browsing, not all history is shown. View entire blame