__init__.py 53 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2013 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
Tiago Peixoto's avatar
Tiago Peixoto committed
19
# along with this program.  If not, see <http://www.gnu.org/licenses/>.s
20

21
"""
22
``graph_tool.generation`` - Random graph generation
23
---------------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35

Summary
+++++++

.. autosummary::
   :nosignatures:

   random_graph
   random_rewire
   predecessor_tree
   line_graph
   graph_union
36
   triangulation
37
38
   lattice
   geometric_graph
39
   price_network
Tiago Peixoto's avatar
Tiago Peixoto committed
40
   complete_graph
Tiago Peixoto's avatar
Tiago Peixoto committed
41
   circular_graph
42
43
44

Contents
++++++++
45
46
"""

47
48
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. dl_import import dl_import
50
dl_import("from . import libgraph_tool_generation")
51

52
from .. import Graph, GraphView, _check_prop_scalar, _prop, _limit_args, _gt_type, _get_rng
Tiago Peixoto's avatar
Tiago Peixoto committed
53
from .. stats import label_parallel_edges, label_self_loops
54
55
import inspect
import types
56
import sys, numpy, numpy.random
57

Tiago Peixoto's avatar
Tiago Peixoto committed
58
__all__ = ["random_graph", "random_rewire", "predecessor_tree", "line_graph",
59
           "graph_union", "triangulation", "lattice", "geometric_graph",
Tiago Peixoto's avatar
Tiago Peixoto committed
60
           "price_network", "complete_graph", "circular_graph"]
61

Tiago Peixoto's avatar
Tiago Peixoto committed
62

63
64
def random_graph(N, deg_sampler, directed=True,
                 parallel_edges=False, self_loops=False, block_membership=None,
65
                 block_type="int", degree_block=False,
66
                 random=True, verbose=False, **kwargs):
Tiago Peixoto's avatar
Tiago Peixoto committed
67
    r"""
68
69
70
71
72
73
74
    Generate a random graph, with a given degree distribution and (optionally)
    vertex-vertex correlation.

    The graph will be randomized via the :func:`~graph_tool.generation.random_rewire`
    function, and any remaining parameters will be passed to that function.
    Please read its documentation for all the options regarding the different
    statistical models which can be chosen.
Tiago Peixoto's avatar
Tiago Peixoto committed
75
76
77
78
79
80
81
82
83
84
85

    Parameters
    ----------
    N : int
        Number of vertices in the graph.
    deg_sampler : function
        A degree sampler function which is called without arguments, and returns
        a tuple of ints representing the in and out-degree of a given vertex (or
        a single int for undirected graphs, representing the out-degree). This
        function is called once per vertex, but may be called more times, if the
        degree sequence cannot be used to build a graph.
86

87
        Optionally, you can also pass a function which receives one or two
88
89
90
        arguments. If ``block_membership == None``, the single argument passed
        will be the index of the vertex which will receive the degree.  If
        ``block_membership != None``, the first value passed will be the vertex
91
        index, and the second will be the block value of the vertex.
92
    directed : bool (optional, default: ``True``)
Tiago Peixoto's avatar
Tiago Peixoto committed
93
        Whether the generated graph should be directed.
94
95
96
97
    parallel_edges : bool (optional, default: ``False``)
        If ``True``, parallel edges are allowed.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are allowed.
98
    block_membership : list or :class:`~numpy.ndarray` or function (optional, default: ``None``)
99
        If supplied, the graph will be sampled from a stochastic blockmodel
100
101
102
        ensemble, and this parameter specifies the block membership of the
        vertices, which will be passed to the
        :func:`~graph_tool.generation.random_rewire` function.
103
104
105
106

        If the value is a list or a :class:`~numpy.ndarray`, it must have
        ``len(block_membership) == N``, and the values will define to which
        block each vertex belongs.
107
108
109
110

        If this value is a function, it will be used to sample the block
        types. It must be callable either with no arguments or with a single
        argument which will be the vertex index. In either case it must return
111
112
        a type compatible with the ``block_type`` parameter.
    block_type : string (optional, default: ``"int"``)
113
        Value type of block labels. Valid only if ``block_membership != None``.
114
115
116
117
118
    degree_block : bool (optional, default: ``False``)
        If ``True``, the degree of each vertex will be appended to block labels
        when constructing the blockmodel, such that the resulting block type
        will be a pair :math:`(r, k)`, where :math:`r` is the original block
        label.
119
120
121
122
123
    random : bool (optional, default: ``True``)
        If ``True``, the returned graph is randomized. Otherwise a deterministic
        placement of the edges will be used.
    verbose : bool (optional, default: ``False``)
        If ``True``, verbose information is displayed.
Tiago Peixoto's avatar
Tiago Peixoto committed
124
125
126

    Returns
    -------
127
    random_graph : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
128
        The generated graph.
129
130
    blocks : :class:`~graph_tool.PropertyMap`
        A vertex property map with the block values. This is only returned if
131
        ``block_membership != None``.
Tiago Peixoto's avatar
Tiago Peixoto committed
132
133
134

    See Also
    --------
135
    random_rewire: in-place graph shuffling
Tiago Peixoto's avatar
Tiago Peixoto committed
136
137
138

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
139
140
141
    The algorithm makes sure the degree sequence is graphical (i.e. realizable)
    and keeps re-sampling the degrees if is not. With a valid degree sequence,
    the edges are placed deterministically, and later the graph is shuffled with
142
143
    the :func:`~graph_tool.generation.random_rewire` function, with all
    remaining parameters passed to it.
Tiago Peixoto's avatar
Tiago Peixoto committed
144

145
    The complexity is :math:`O(V + E)` if parallel edges are allowed, and
146
    :math:`O(V + E \times\text{n-iter})` if parallel edges are not allowed.
147
148
149
150
151
152


    .. note ::

        If ``parallel_edges == False`` this algorithm only guarantees that the
        returned graph will be a random sample from the desired ensemble if
153
        ``n_iter`` is sufficiently large. The algorithm implements an
154
155
156
157
        efficient Markov chain based on edge swaps, with a mixing time which
        depends on the degree distribution and correlations desired. If degree
        correlations are provided, the mixing time tends to be larger.

Tiago Peixoto's avatar
Tiago Peixoto committed
158
159
    Examples
    --------
160
161
162
163
164
165
166
167

    .. testcode::
       :hide:

       from numpy.random import randint, random, seed, poisson
       from pylab import *
       seed(43)
       gt.seed_rng(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    This is a degree sampler which uses rejection sampling to sample from the
    distribution :math:`P(k)\propto 1/k`, up to a maximum.

    >>> def sample_k(max):
    ...     accept = False
    ...     while not accept:
    ...         k = randint(1,max+1)
    ...         accept = random() < 1.0/k
    ...     return k
    ...

    The following generates a random undirected graph with degree distribution
    :math:`P(k)\propto 1/k` (with k_max=40) and an *assortative* degree
    correlation of the form:

    .. math::

        P(i,k) \propto \frac{1}{1+|i-k|}

188
189
190
    >>> g = gt.random_graph(1000, lambda: sample_k(40), model="probabilistic",
    ...                     vertex_corr=lambda i, k: 1.0 / (1 + abs(i - k)), directed=False,
    ...                     n_iter=100)
Tiago Peixoto's avatar
Tiago Peixoto committed
191
    >>> gt.scalar_assortativity(g, "out")
Tiago Peixoto's avatar
Tiago Peixoto committed
192
    (0.6285094791115295, 0.010745128857935755)
Tiago Peixoto's avatar
Tiago Peixoto committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    The following samples an in,out-degree pair from the joint distribution:

    .. math::

        p(j,k) = \frac{1}{2}\frac{e^{-m_1}m_1^j}{j!}\frac{e^{-m_1}m_1^k}{k!} +
                 \frac{1}{2}\frac{e^{-m_2}m_2^j}{j!}\frac{e^{-m_2}m_2^k}{k!}

    with :math:`m_1 = 4` and :math:`m_2 = 20`.

    >>> def deg_sample():
    ...    if random() > 0.5:
    ...        return poisson(4), poisson(4)
    ...    else:
    ...        return poisson(20), poisson(20)
208
    ...
Tiago Peixoto's avatar
Tiago Peixoto committed
209
210
211
212
213
214
215

    The following generates a random directed graph with this distribution, and
    plots the combined degree correlation.

    >>> g = gt.random_graph(20000, deg_sample)
    >>>
    >>> hist = gt.combined_corr_hist(g, "in", "out")
216
217
    >>>
    >>> clf()
218
    >>> imshow(hist[0].T, interpolation="nearest", origin="lower")
Tiago Peixoto's avatar
Tiago Peixoto committed
219
220
221
    <...>
    >>> colorbar()
    <...>
222
    >>> xlabel("in-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
223
    <...>
224
    >>> ylabel("out-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
225
    <...>
226
    >>> savefig("combined-deg-hist.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
227

228
229
230
231
232
    .. testcode::
       :hide:

       savefig("combined-deg-hist.png")

233
    .. figure:: combined-deg-hist.*
Tiago Peixoto's avatar
Tiago Peixoto committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        :align: center

        Combined degree histogram.

    A correlated directed graph can be build as follows. Consider the following
    degree correlation:

    .. math::

         P(j',k'|j,k)=\frac{e^{-k}k^{j'}}{j'!}
         \frac{e^{-(20-j)}(20-j)^{k'}}{k'!}

    i.e., the in->out correlation is "disassortative", the out->in correlation
    is "assortative", and everything else is uncorrelated.
    We will use a flat degree distribution in the range [1,20).

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
252
253
254
255
    ...                     model="probabilistic",
    ...                     vertex_corr=lambda a,b: (p.pmf(a[0], b[1]) *
    ...                                              p.pmf(a[1], 20 - b[0])),
    ...                     n_iter=100)
Tiago Peixoto's avatar
Tiago Peixoto committed
256
257
258

    Lets plot the average degree correlations to check.

259
    >>> clf()
260
261
    >>> axes([0.1,0.15,0.63,0.8])
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
262
    >>> corr = gt.avg_neighbour_corr(g, "in", "in")
263
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
264
    ...         label=r"$\left<\text{in}\right>$ vs in")
265
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
266
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
267
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
268
    ...         label=r"$\left<\text{out}\right>$ vs in")
269
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
270
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
271
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
272
    ...          label=r"$\left<\text{in}\right>$ vs out")
273
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
274
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
275
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
276
    ...          label=r"$\left<\text{out}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
277
    <...>
278
279
280
    >>> legend(bbox_to_anchor=(1.01, 0.5), loc="center left", borderaxespad=0.)
    <...>
    >>> xlabel("Source degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
281
    <...>
282
    >>> ylabel("Average target degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
283
    <...>
284
    >>> savefig("deg-corr-dir.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
285

286
287
288
289
290
    .. testcode::
       :hide:

       savefig("deg-corr-dir.png")

291
    .. figure:: deg-corr-dir.*
Tiago Peixoto's avatar
Tiago Peixoto committed
292
293
294
        :align: center

        Average nearest neighbour correlations.
295
296


297
    **Stochastic blockmodels**
298
299


300
301
302
    The following example shows how a stochastic blockmodel
    [holland-stochastic-1983]_ [karrer-stochastic-2011]_ can be generated. We
    will consider a system of 10 blocks, which form communities. The connection
303
304
305
306
307
308
309
310
311
312
    probability will be given by

    >>> def corr(a, b):
    ...    if a == b:
    ...        return 0.999
    ...    else:
    ...        return 0.001

    The blockmodel can be generated as follows.

Tiago Peixoto's avatar
Tiago Peixoto committed
313
    >>> g, bm = gt.random_graph(5000, lambda: poisson(10), directed=False,
314
315
316
    ...                         model="blockmodel-traditional",
    ...                         block_membership=lambda: randint(10),
    ...                         vertex_corr=corr)
Tiago Peixoto's avatar
Tiago Peixoto committed
317
    >>> gt.graph_draw(g, vertex_fill_color=bm, edge_color="black", output="blockmodel.pdf")
318
319
    <...>

320
321
322
    .. testcode::
       :hide:

Tiago Peixoto's avatar
Tiago Peixoto committed
323
       gt.graph_draw(g, vertex_fill_color=bm, edge_color="black", output="blockmodel.png")
324

325
    .. figure:: blockmodel.*
326
327
328
329
330
331
332
333
334
335
        :align: center

        Simple blockmodel with 10 blocks.


    References
    ----------
    .. [metropolis-equations-1953]  Metropolis, N.; Rosenbluth, A.W.;
       Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State
       Calculations by Fast Computing Machines". Journal of Chemical Physics 21
336
       (6): 1087-1092 (1953). :doi:`10.1063/1.1699114`
337
    .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods
338
       Using Markov Chains and Their Applications". Biometrika 57 (1): 97-109 (1970).
339
       :doi:`10.1093/biomet/57.1.97`
340
341
342
343
344
345
    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey, and
       Samuel Leinhardt, "Stochastic blockmodels: First steps," Social Networks
       5, no. 2: 109-13 (1983) :doi:`10.1016/0378-8733(83)90021-7`
    .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic
       blockmodels and community structure in networks," Physical Review E 83,
       no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926`
Tiago Peixoto's avatar
Tiago Peixoto committed
346
    """
347

348
    g = Graph()
349

350
351
    if (type(block_membership) is types.FunctionType or
        type(block_membership) is types.LambdaType):
352
353
        btype = block_type
        bm = []
354
        if len(inspect.getargspec(block_membership)[0]) == 0:
355
            for i in range(N):
356
                bm.append(block_membership())
357
        else:
358
            for i in range(N):
359
360
361
362
                bm.append(block_membership(i))
        block_membership = bm
    elif block_membership is not None:
        btype = _gt_type(block_membership[0])
363
364

    if len(inspect.getargspec(deg_sampler)[0]) > 0:
365
366
        if block_membership is not None:
            sampler = lambda i: deg_sampler(i, block_membership[i])
367
        else:
Tiago Peixoto's avatar
Tiago Peixoto committed
368
            sampler = deg_sampler
369
370
371
372
    else:
        sampler = lambda i: deg_sampler()

    libgraph_tool_generation.gen_graph(g._Graph__graph, N, sampler,
373
                                       not parallel_edges,
374
                                       not self_loops, not directed,
375
                                       _get_rng(), verbose, True)
376
377
    g.set_directed(directed)

378
379
380
381
382
383
384
385
386
387
388
389
    if degree_block:
        if btype in ["object", "string"] or "vector" in btype:
            btype = "object"
        elif btype in ["int", "int32_t", "bool"]:
            btype = "vector<int32_t>"
        elif btype in ["long", "int64_t"]:
            btype = "vector<int64_t>"
        elif btype in ["double"]:
            btype = "vector<double>"
        elif btype in ["long double"]:
            btype = "vector<long double>"

390
    if block_membership is not None:
391
392
393
        bm = g.new_vertex_property(btype)
        if btype in ["object", "string"] or "vector" in btype:
            for v in g.vertices():
394
                if not degree_block:
395
                    bm[v] = block_membership[int(v)]
396
397
                else:
                    if g.is_directed():
398
                        bm[v] = (block_membership[int(v)], v.in_degree(),
399
400
                                 v.out_degree())
                    else:
401
                        bm[v] = (block_membership[int(v)], v.out_degree())
402
403
        else:
            try:
404
                bm.a = block_membership
405
406
407
            except ValueError:
                bm = g.new_vertex_property("object")
                for v in g.vertices():
408
                    bm[v] = block_membership[int(v)]
409
410
    else:
        bm = None
411

Tiago Peixoto's avatar
Tiago Peixoto committed
412
    if random:
413
414
415
        random_rewire(g, parallel_edges=parallel_edges,
                      self_loops=self_loops, verbose=verbose,
                      block_membership=bm, **kwargs)
416

417
418
419
420
    if bm is None:
        return g
    else:
        return g, bm
421

Tiago Peixoto's avatar
Tiago Peixoto committed
422

423
424
425
426
427
428
429
@_limit_args({"model": ["erdos", "correlated", "uncorrelated",
                        "probabilistic", "blockmodel",
                        "blockmodel-traditional"]})
def random_rewire(g, model="uncorrelated", n_iter=1, edge_sweep=True,
                  parallel_edges=False, self_loops=False, vertex_corr=None,
                  block_membership=None, alias=True, cache_probs=True,
                  persist=False, ret_fail=False, verbose=False):
430
    r"""
431

432
433
434
    Shuffle the graph in-place, following a variety of possible statistical
    models, chosen via the parameter ``model``.

435
436
437

    Parameters
    ----------
438
    g : :class:`~graph_tool.Graph`
439
        Graph to be shuffled. The graph will be modified.
440
441
442
    model : string (optional, default: ``"uncorrelated"``)
        The following statistical models can be chosen, which determine how the
        edges are rewired.
443

444
445
446
447
448
449
450
451
452
453
454
455
        ``erdos``
           The edges will be rewired entirely randomly, and the resulting graph
           will correspond to the Erdős–Rényi model.
        ``uncorrelated``
           The edges will be rewired randomly, but the degree sequence of the
           graph will remain unmodified.
        ``correlated``
           The edges will be rewired randomly, but both the degree sequence of
           the graph and the *vertex-vertex degree correlations* will remain
           unmodified.
        ``probabilistic``
           This is similar to the ``correlated`` option, but the vertex-vertex
456
           correlations are not kept unmodified, but instead are sampled from an
457
458
459
460
461
462
463
           arbitrary degree-based probabilistic model specified via the
           ``vertex_corr`` parameter.
        ``blockmodel``
          This is just like ``probabilistic``, but the values passed to the
          ``vertex_corr`` function will correspond to the block membership
          values specified by the ``block_membership`` parameter.
        ``blockmodel-traditional``
464
465
466
          This is just like ``blockmodel``, but the degree sequence *is not*
          preserved during rewiring.

467
468
469
470
471
472
473
474
475
476
477
478
479
    n_iter : int (optional, default: ``1``)
        Number of iterations. If ``edge_sweep == True``, each iteration
        corresponds to an entire "sweep" over all edges. Otherwise this
        corresponds to the total number of edges which are randomly chosen for a
        swap attempt (which may repeat).
    edge_sweep : bool (optional, default: ``True``)
        If ``True``, each iteration will perform an entire "sweep" over the
        edges, where each edge is visited once in random order, and a edge swap
        is attempted.
    parallel : bool (optional, default: ``False``)
        If ``True``, parallel edges are allowed.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are allowed.
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    vertex_corr : function (optional, default: ``None``)
        A function which gives the vertex-vertex correlation of the graph.

        If ``model == probabilistic`` it should be callable with two parameters:
        the (in, out)-degree pair of the source vertex an edge, and the
        (in,out)-degree pair of the target of the same edge (for undirected
        graphs, both parameters are single values). The function should return a
        number proportional to the probability of such an edge existing in the
        generated graph.

        If ``model == blockmodel`` or ``model == blockmodel-traditional``, the
        values passed to the function will be the block value of the respective
        vertices, as specified via the ``block_membership``. The function should
        also return a number proportional to the probability of such an edge
        existing in the generated graph.
    block_membership : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If supplied, the graph will be rewired to conform to a blockmodel
        ensemble. The value must be a vertex property map which defines the
        block of each vertex.
    alias : bool (optional, default: ``True``)
        If ``True``, and ``model`` is any of ``probabilistic``, ``blockmodel``,
        or ``blockmodel-traditional``, the alias method will be used to sample
        the candidate edges. In the case of ``blockmodel-traditional``, if
        ``parallel_edges == True`` and ``self_loops == True`` this makes the
        sampling of the edges direct (not rejection based), so that
        ``n_iter == 1`` is enough to get an uncorrelated sample.
506
    cache_probs : bool (optional, default: ``True``)
507
        If ``True``, the probabilities returned by the ``vertex_corr`` parameter
508
509
510
511
        will be cached internally. This is crucial for good performance, since
        in this case the supplied python function is called only a few times,
        and not at every attempted edge rewire move. However, in the case were
        the different parameter combinations to the probability function is very
512
513
514
515
516
517
518
519
        large, the memory and time requirements to keep the cache may not be
        worthwhile.
    persist : bool (optional, default: ``False``)
        If ``True``, an edge swap which is rejected will be attempted again
        until it succeeds. This may improve the quality of the shuffling for
        some probabilistic models, and should be sufficiently fast for sparse
        graphs, but otherwise it may result in many repeated attempts for
        certain corner-cases in which edges are difficult to swap.
520
521
522
523
524
525
    verbose : bool (optional, default: ``False``)
        If ``True``, verbose information is displayed.


    Returns
    -------
526
527
528
    rejection_count : int
        Number of rejected edge moves (due to parallel edges or self-loops, or
        the probabilistic model used).
529
530
531
532
533
534
535

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
536
    This algorithm iterates through all the edges in the network and tries to
537
538
    swap its target or source with the target or source of another edge. The
    selected canditate swaps are chosen according to the ``model`` parameter.
Tiago Peixoto's avatar
Tiago Peixoto committed
539
540

    .. note::
541

542
543
544
545
546
547
548
549
        If ``parallel_edges = False``, parallel edges are not placed during
        rewiring. In this case, the returned graph will be a uncorrelated sample
        from the desired ensemble only if ``n_iter`` is sufficiently large. The
        algorithm implements an efficient Markov chain based on edge swaps, with
        a mixing time which depends on the degree distribution and correlations
        desired. If degree probabilistic correlations are provided, the mixing
        time tends to be larger.

550
551
552
553
554
555
556
        If ``model`` is either "probabilistic" or "blockmodel", the Markov chain
        still needs to be mixed, even if parallel edges and self-loops are
        allowed. In this case the Markov chain is implemented using the
        Metropolis-Hastings [metropolis-equations-1953]_
        [hastings-monte-carlo-1970]_ acceptance/rejection algorithm. It will
        eventually converge to the desired probabilities for sufficiently large
        values of ``n_iter``.
557

Tiago Peixoto's avatar
Tiago Peixoto committed
558

559
    Each edge is tentatively swapped once per iteration, so the overall
560
561
    complexity is :math:`O(V + E \times \text{n-iter})`. If ``edge_sweep ==
    False``, the complexity becomes :math:`O(V + E + \text{n-iter})`.
562

563
564
565
566
567
    Examples
    --------

    Some small graphs for visualization.

568
569
570
571
572
573
574
575
    .. testcode::
       :hide:

       from numpy.random import random, seed
       from pylab import *
       seed(43)
       gt.seed_rng(42)

576
    >>> g, pos = gt.triangulation(random((1000,2)))
577
    >>> pos = gt.arf_layout(g)
578
    >>> gt.graph_draw(g, pos=pos, output="rewire_orig.pdf", output_size=(300, 300))
579
    <...>
580
581
582
583
584
585

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rewire_orig.png", output_size=(300, 300))

586
    >>> gt.random_rewire(g, "correlated")
Tiago Peixoto's avatar
Tiago Peixoto committed
587
    189
588
    >>> pos = gt.arf_layout(g)
589
    >>> gt.graph_draw(g, pos=pos, output="rewire_corr.pdf", output_size=(300, 300))
590
    <...>
591
592
593
594
595
596

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rewire_corr.png", output_size=(300, 300))

597
    >>> gt.random_rewire(g)
Tiago Peixoto's avatar
Tiago Peixoto committed
598
    197
599
    >>> pos = gt.arf_layout(g)
600
    >>> gt.graph_draw(g, pos=pos, output="rewire_uncorr.pdf", output_size=(300, 300))
601
    <...>
602
603
604
605
606
607

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rewire_uncorr.png", output_size=(300, 300))

608
    >>> gt.random_rewire(g, "erdos")
Tiago Peixoto's avatar
Tiago Peixoto committed
609
    26
610
    >>> pos = gt.arf_layout(g)
611
    >>> gt.graph_draw(g, pos=pos, output="rewire_erdos.pdf", output_size=(300, 300))
612
    <...>
613

614
615
616
617
618
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rewire_erdos.png", output_size=(300, 300))

619
    Some `ridiculograms <http://www.youtube.com/watch?v=YS-asmU3p_4>`_ :
620

621
622
623
624
    .. image:: rewire_orig.*
    .. image:: rewire_corr.*
    .. image:: rewire_uncorr.*
    .. image:: rewire_erdos.*
625

626
627
    **From left to right**: Original graph; Shuffled graph, with degree correlations;
    Shuffled graph, without degree correlations; Shuffled graph, with random degrees.
628

629
    We can try with larger graphs to get better statistics, as follows.
630

631
632
    >>> figure()
    <...>
633
634
635
    >>> g = gt.random_graph(30000, lambda: sample_k(20), model="probabilistic",
    ...                     vertex_corr=lambda i, j: exp(abs(i-j)), directed=False,
    ...                     n_iter=100)
636
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
637
638
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Original")
    <...>
639
    >>> gt.random_rewire(g, "correlated")
Tiago Peixoto's avatar
Tiago Peixoto committed
640
    206
641
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
642
643
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="*", label="Correlated")
    <...>
644
    >>> gt.random_rewire(g)
Tiago Peixoto's avatar
Tiago Peixoto committed
645
    109
646
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
647
648
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Uncorrelated")
    <...>
649
    >>> gt.random_rewire(g, "erdos")
Tiago Peixoto's avatar
Tiago Peixoto committed
650
    13
651
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
652
653
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label=r"Erd\H{o}s")
    <...>
654
655
656
657
658
659
    >>> xlabel("$k$")
    <...>
    >>> ylabel(r"$\left<k_{nn}\right>$")
    <...>
    >>> legend(loc="best")
    <...>
660
    >>> savefig("shuffled-stats.pdf")
661

662
663
664
665
666
667
    .. testcode::
       :hide:

       savefig("shuffled-stats.png")


668
    .. figure:: shuffled-stats.*
669
670
671
672
673
674
675
676
677
678
679
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        graphs. The shuffled graph with correlations displays exactly the same
        correlation as the original graph.

    Now let's do it for a directed graph. See
    :func:`~graph_tool.generation.random_graph` for more details.

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
680
681
682
    ...                     model="probabilistic",
    ...                     vertex_corr=lambda a, b: (p.pmf(a[0], b[1]) * p.pmf(a[1], 20 - b[0])),
    ...                     n_iter=100)
683
    >>> figure()
684
685
686
    <...>
    >>> axes([0.1,0.15,0.6,0.8])
    <...>
687
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
688
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
689
    ...          label=r"$\left<\text{o}\right>$ vs i")
690
    <...>
691
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
692
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
693
    ...          label=r"$\left<\text{i}\right>$ vs o")
694
    <...>
695
    >>> gt.random_rewire(g, "correlated")
Tiago Peixoto's avatar
Tiago Peixoto committed
696
    4323
697
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
698
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
699
    ...          label=r"$\left<\text{o}\right>$ vs i, corr.")
700
    <...>
701
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
702
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
703
    ...          label=r"$\left<\text{i}\right>$ vs o, corr.")
704
    <...>
705
    >>> gt.random_rewire(g, "uncorrelated")
Tiago Peixoto's avatar
Tiago Peixoto committed
706
    153
707
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
708
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
709
    ...          label=r"$\left<\text{o}\right>$ vs i, uncorr.")
710
    <...>
711
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
712
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
713
    ...          label=r"$\left<\text{i}\right>$ vs o, uncorr.")
714
    <...>
715
716
717
    >>> legend(bbox_to_anchor=(1.01, 0.5), loc="center left", borderaxespad=0.)
    <...>
    >>> xlabel("Source degree")
718
    <...>
719
    >>> ylabel("Average target degree")
720
    <...>
721
    >>> savefig("shuffled-deg-corr-dir.pdf")
722

723
724
725
726
727
    .. testcode::
       :hide:

       savefig("shuffled-deg-corr-dir.png")

728
    .. figure:: shuffled-deg-corr-dir.*
729
730
731
732
733
734
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        directed graphs. The shuffled graph with correlations displays exactly
        the same correlation as the original graph.

735
736
737
738
739
    References
    ----------
    .. [metropolis-equations-1953]  Metropolis, N.; Rosenbluth, A.W.;
       Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State
       Calculations by Fast Computing Machines". Journal of Chemical Physics 21
740
       (6): 1087-1092 (1953). :doi:`10.1063/1.1699114`
741
    .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods
742
       Using Markov Chains and Their Applications". Biometrika 57 (1): 97-109 (1970).
743
       :doi:`10.1093/biomet/57.1.97`
744
745
746
747
748
749
    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey, and
       Samuel Leinhardt, "Stochastic blockmodels: First steps," Social Networks
       5, no. 2: 109-13 (1983) :doi:`10.1016/0378-8733(83)90021-7`
    .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic
       blockmodels and community structure in networks," Physical Review E 83,
       no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926`
750
751

    """
Tiago Peixoto's avatar
Tiago Peixoto committed
752
753
754
755
756
757
758
759
760
761
762
763
764
    if not parallel_edges:
        p = label_parallel_edges(g)
        if p.a.max() != 0:
            raise ValueError("Parallel edge detected. Can't rewire " +
                             "graph without parallel edges if it " +
                             "already contains parallel edges!")
    if not self_loops:
        l = label_self_loops(g)
        if l.a.max() != 0:
            raise ValueError("Self-loop detected. Can't rewire graph " +
                             "without self-loops if it already contains" +
                             " self-loops!")

765
766
    if (vertex_corr is not None and not g.is_directed()) and "blockmodel" not in model:
        corr = lambda i, j: vertex_corr(i[1], j[1])
767
    else:
768
        corr = vertex_corr
769

770
    if model not in ["probabilistic", "blockmodel", "blockmodel-traditional"]:
771
        g = GraphView(g, reversed=False)
772
773
774
775
776
777

    traditional = False
    if model == "blockmodel-traditional":
        model = "blockmodel"
        traditional = True
    pcount = libgraph_tool_generation.random_rewire(g._Graph__graph, model,
778
779
                                                    n_iter, not edge_sweep,
                                                    self_loops, parallel_edges,
780
781
                                                    alias, traditional, persist,
                                                    corr, _prop("v", g, block_membership),
782
                                                    cache_probs,
783
                                                    _get_rng(), verbose)
784
    return pcount
Tiago Peixoto's avatar
Tiago Peixoto committed
785

Tiago Peixoto's avatar
Tiago Peixoto committed
786

Tiago Peixoto's avatar
Tiago Peixoto committed
787
def predecessor_tree(g, pred_map):
Tiago Peixoto's avatar
Tiago Peixoto committed
788
    """Return a graph from a list of predecessors given by the ``pred_map`` vertex property."""
Tiago Peixoto's avatar
Tiago Peixoto committed
789
790
791
792
793
794
795

    _check_prop_scalar(pred_map, "pred_map")
    pg = Graph()
    libgraph_tool_generation.predecessor_graph(g._Graph__graph,
                                               pg._Graph__graph,
                                               _prop("v", g, pred_map))
    return pg
796

Tiago Peixoto's avatar
Tiago Peixoto committed
797

798
def line_graph(g):
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    """Return the line graph of the given graph `g`.

    Notes
    -----
    Given an undirected graph G, its line graph L(G) is a graph such that

        * each vertex of L(G) represents an edge of G; and
        * two vertices of L(G) are adjacent if and only if their corresponding
          edges share a common endpoint ("are adjacent") in G.

    For a directed graph, the second criterion becomes:

       * Two vertices representing directed edges from u to v and from w to x in
         G are connected by an edge from uv to wx in the line digraph when v =
         w.

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

    Examples
    --------

    >>> g = gt.collection.data["lesmis"]
    >>> lg, vmap = gt.line_graph(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], output="lesmis.pdf")
    <...>
    >>> pos = gt.graph_draw(lg, output="lesmis-lg.pdf")

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], output="lesmis.png")
       pos = gt.graph_draw(lg, pos=pos, output="lesmis-lg.png")


    .. figure:: lesmis.png
       :align: left

       Coappearances of characters in Victor Hugo's novel "Les Miserables".

    .. figure:: lesmis-lg.png
       :align: right

       Line graph of the coappearance network on the left.

842
843
844
845
    References
    ----------
    .. [line-wiki] http://en.wikipedia.org/wiki/Line_graph
    """
846
847
848
849
850
851
852
853
    lg = Graph(directed=g.is_directed())

    vertex_map = lg.new_vertex_property("int64_t")

    libgraph_tool_generation.line_graph(g._Graph__graph,
                                        lg._Graph__graph,
                                        _prop("v", lg, vertex_map))
    return lg, vertex_map
Tiago Peixoto's avatar
Tiago Peixoto committed
854

Tiago Peixoto's avatar
Tiago Peixoto committed
855

856
def graph_union(g1, g2, intersection=None, props=None, include=False):
857
858
859
860
861
862
863
864
865
    """Return the union of graphs g1 and g2, composed of all edges and vertices
    of g1 and g2, without overlap.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
       First graph in the union.
    g2 : :class:`~graph_tool.Graph`
       Second graph in the union.
866
867
868
869
870
    intersection : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
       Vertex property map owned by `g1` which maps each of each of its vertices
       to vertex indexes belonging to `g2`. Negative values mean no mapping
       exists, and thus both vertices in `g1` and `g2` will be present in the
       union graph.
871
    props : list of tuples of :class:`~graph_tool.PropertyMap` (optional, default: ``[]``)
872
873
874
875
       Each element in this list must be a tuple of two PropertyMap objects. The
       first element must be a property of `g1`, and the second of `g2`. The
       values of the property maps are propagated into the union graph, and
       returned.
876
    include : bool (optional, default: ``False``)
877
878
879
880
881
882
883
884
885
886
       If true, graph `g2` is inserted into `g1` which is modified. If false, a
       new graph is created, and both graphs remain unmodified.

    Returns
    -------
    ug : :class:`~graph_tool.Graph`
        The union graph
    props : list of :class:`~graph_tool.PropertyMap` objects
        List of propagated properties.  This is only returned if `props` is not
        empty.
887
888
889
890

    Examples
    --------

891
892
893
894
895
896
897
898
    .. testcode::
       :hide:

       from numpy.random import random, seed
       from pylab import *
       seed(42)
       gt.seed_rng(42)

899
900
901
    >>> g = gt.triangulation(random((300,2)))[0]
    >>> ug = gt.graph_union(g, g)
    >>> uug = gt.graph_union(g, ug)
902
    >>> pos = gt.sfdp_layout(g)
903
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="graph_original.pdf")
904
    <...>
905
906
907
908
909
910
911

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), output="graph_original.png")

    >>> pos = gt.sfdp_layout(ug)
912
    >>> gt.graph_draw(ug, pos=pos, output_size=(300,300), output="graph_union.pdf")
913
    <...>
914
915
916
917
918
919
920

    .. testcode::
       :hide:

       gt.graph_draw(ug, pos=pos, output_size=(300,300), output="graph_union.png")

    >>> pos = gt.sfdp_layout(uug)
921
    >>> gt.graph_draw(uug, pos=pos, output_size=(300,300), output="graph_union2.pdf")
922
923
    <...>

924
925
926
927
928
929
    .. testcode::
       :hide:

       gt.graph_draw(uug, pos=pos, output_size=(300,300), output="graph_union2.png")


930
931
932
    .. image:: graph_original.*
    .. image:: graph_union.*
    .. image:: graph_union2.*
933

934
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
935
936
    if props == None:
        props = []
Tiago Peixoto's avatar
Tiago Peixoto committed
937
938
    if not include:
        g1 = Graph(g1)
939
940
941
942
943
944
945
946
    if intersection is None:
        intersection = g1.new_vertex_property("int32_t")
        intersection.a = 0
    else:
        intersection = intersection.copy("int32_t")
        intersection.a[intersection.a >= 0] += 1
        intersection.a[intersection.a < 0] = 0

947
948
    u1 = GraphView(g1, directed=True, skip_properties=True)
    u2 = GraphView(g2, directed=True, skip_properties=True)
Tiago Peixoto's avatar
Tiago Peixoto committed
949

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
    vmap, emap = libgraph_tool_generation.graph_union(u1._Graph__graph,
                                                      u2._Graph__graph,
                                                      _prop("v", g1,
                                                            intersection))
    n_props = []
    for p1, p2 in props:
        if not include:
            p1 = g1.copy_property(p1)
        if p2.value_type() != p1.value_type():
            p2 = g2.copy_property(p2, value_type=p1.value_type())
        if p1.key_type() == 'v':
            libgraph_tool_generation.\
                  vertex_property_union(u1._Graph__graph, u2._Graph__graph,
                                        vmap, emap,
                                        _prop(p1.key_type(), g1, p1),
                                        _prop(p2.key_type(), g2, p2))
        else:
            libgraph_tool_generation.\
                  edge_property_union(u1._Graph__graph, u2._Graph__graph,
                                      vmap, emap,
                                      _prop(p1.key_type(), g1, p1),
                                      _prop(p2.key_type(), g2, p2))
        n_props.append(p1)
Tiago Peixoto's avatar
Tiago Peixoto committed
973
974
975
976
977

    if len(n_props) > 0:
        return g1, n_props
    else:
        return g1
978

Tiago Peixoto's avatar
Tiago Peixoto committed
979
980

@_limit_args({"type": ["simple", "delaunay"]})
981
def triangulation(points, type="simple", periodic=False):
982
983
984
985
986
987
988
989
    r"""
    Generate a 2D or 3D triangulation graph from a given point set.

    Parameters
    ----------
    points : :class:`~numpy.ndarray`
        Point set for the triangulation. It may be either a N x d array, where N
        is the number of points, and d is the space dimension (either 2 or 3).
990
    type : string (optional, default: ``'simple'``)
991
        Type of triangulation. May be either 'simple' or 'delaunay'.
992
993
994
    periodic : bool (optional, default: ``False``)
        If ``True``, periodic boundary conditions will be used. This is
        parameter is valid only for type="delaunay", and is otherwise ignored.
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

    Returns
    -------
    triangulation_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        Vertex property map with the Cartesian coordinates.

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----

Tiago Peixoto's avatar
Tiago Peixoto committed
1010
    A triangulation [cgal-triang]_ is a division of the convex hull of a point
1011
    set into triangles, using only that set as triangle vertices.
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

    In simple triangulations (`type="simple"`), the insertion of a point is done
    by locating a face that contains the point, and splitting this face into
    three new faces (the order of insertion is therefore important). If the
    point falls outside the convex hull, the triangulation is restored by
    flips. Apart from the location, insertion takes a time O(1). This bound is
    only an amortized bound for points located outside the convex hull.

    Delaunay triangulations (`type="delaunay"`) have the specific empty sphere
    property, that is, the circumscribing sphere of each cell of such a
    triangulation does not contain any other vertex of the triangulation in its
    interior. These triangulations are uniquely defined except in degenerate
    cases where five points are co-spherical. Note however that the CGAL
    implementation computes a unique triangulation even in these cases.

    Examples
    --------
1029
1030
1031
1032
1033
1034
1035
    .. testcode::
       :hide:

       from numpy.random import random, seed
       from pylab import *
       seed(42)
       gt.seed_rng(42)
1036
    >>> points = random((500, 2)) * 4
1037
    >>> g, pos = gt.triangulation(points)
1038
1039
1040
1041
1042
1043
1044
    >>> weight = g.new_edge_property("double") # Edge weights corresponding to
    ...                                        # Euclidean distances
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 100
1045
1046
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), vertex_fill_color=b[0],
    ...               edge_pen_width=b[1], output="triang.pdf")
1047
    <...>
1048
1049
1050
1051
1052
1053
1054

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), vertex_fill_color=b[0],
                     edge_pen_width=b[1], output="triang.png")

1055
    >>> g, pos = gt.triangulation(points, type="delaunay")
1056
1057
1058
1059
1060
1061
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 120
1062
1063
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), vertex_fill_color=b[0],
    ...               edge_pen_width=b[1], output="triang-delaunay.pdf")
1064
1065
    <...>

1066
1067
1068
1069
1070
1071
1072
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), vertex_fill_color=b[0],
                     edge_pen_width=b[1], output="triang-delaunay.png")


1073
1074
    2D triangulation of random points:

1075
1076
    .. image:: triang.*
    .. image:: triang-delaunay.*
1077

1078
1079
1080
    *Left:* Simple triangulation. *Right:* Delaunay triangulation. The vertex
    colors and the edge thickness correspond to the weighted betweenness
    centrality.
1081
1082
1083

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
1084
    .. [cgal-triang] http://www.cgal.org/Manual/last/doc_html/cgal_manual/Triangulation_3/Chapter_main.html
1085
1086
1087

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
1088
    if points.shape[1] not in [2, 3]:
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        raise ValueError("points array must have shape N x d, with d either 2 or 3.")
    # copy points to ensure continuity and correct data type
    points = numpy.array(points, dtype='float64')
    if points.shape[1] == 2:
        npoints = numpy.zeros((points.shape[0], 3))
        npoints[:,:2] = points
        points = npoints
    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    libgraph_tool_generation.triangulation(g._Graph__graph, points,
1099
                                           _prop("v", g, pos), type, periodic)
1100
    return g, pos
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110


def lattice(shape, periodic=False):
    r"""
    Generate a N-dimensional square lattice.

    Parameters
    ----------
    shape : list or :class:`~numpy.ndarray`
        List of sizes in each dimension.
1111
    periodic : bool (optional, default: ``False``)
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        If ``True``, periodic boundary conditions will be used.

    Returns
    -------
    lattice_graph : :class:`~graph_tool.Graph`
        The generated graph.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation

    Examples
    --------
1126
1127
1128
1129
1130
    .. testcode::
       :hide:

       gt.seed_rng(42)

1131
    >>> g = gt.lattice([10,10])
1132
1133
    >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2)
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="lattice.pdf")
1134
    <...>
1135
1136
1137
1138
1139
1140

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), output="lattice.png")

1141
    >>> g = gt.lattice([10,20], periodic=True)
1142
1143
    >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2)
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="lattice_periodic.pdf")
1144
    <...>
1145
1146
1147
1148
1149
1150

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), output="lattice_periodic.png")

1151
    >>> g = gt.lattice([10,10,10])
1152
1153
    >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2)
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="lattice_3d.pdf")
1154
1155
    <...>

1156
1157
1158
1159
1160
1161
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), output="lattice_3d.png")


1162
1163
1164
    .. image:: lattice.*
    .. image:: lattice_periodic.*
    .. image:: lattice_3d.*
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

    *Left:* 10x10 2D lattice. *Middle:* 10x20 2D periodic lattice (torus).
    *Right:* 10x10x10 3D lattice.

    References
    ----------
    .. [lattice] http://en.wikipedia.org/wiki/Square_lattice

    """

    g = Graph(directed=False)
    libgraph_tool_generation.lattice(g._Graph__graph, shape, periodic)
    return g

Tiago Peixoto's avatar
Tiago Peixoto committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
def complete_graph(N, self_loops=False, directed=False):
    r"""
    Generate complete graph.

    Parameters
    ----------
    N : ``int``
        Number of vertices.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are included.
    directed : bool (optional, default: ``False``)
        If ``True``, a directed graph is generated.

    Returns
    -------
    complete_graph : :class:`~graph_tool.Graph`
        A complete graph.

    Examples
    --------

    >>> g = gt.complete_graph(30)
    >>> pos = gt.sfdp_layout(g, cooling_step=0.95, epsilon=1e-2)
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="complete.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), output="complete.png")


    .. figure:: complete.*

       A complete graph with :math:`N=30` vertices.

    References
    ----------
    .. [complete] http://en.wikipedia.org/wiki/Complete_graph

    """

    g = Graph(directed=directed)
    libgraph_tool_generation.complete(g._Graph__graph, N, directed, self_loops)
    return g

Tiago Peixoto's avatar
Tiago Peixoto committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
def circular_graph(N, k=1, self_loops=False, directed=False):
    r"""
    Generate a circular graph.

    Parameters
    ----------
    N : ``int``
        Number of vertices.
    k : ``int`` (optional, default: ``True``)
        Number of nearest neighbours to be connected.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are included.
    directed : bool (optional, default: ``False``)
        If ``True``, a directed graph is generated.

    Returns
    -------
    circular_graph : :class:`~graph_tool.Graph`
        A circular graph.

    Examples
    --------

    >>> g = gt.circular_graph(30, 2)
    >>> pos = gt.sfdp_layout(g, cooling_step=0.95)
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="circular.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output_size=(300,300), output="circular.png")

    .. figure:: circular.*

       A circular graph with :math:`N=30` vertices, and :math:`k=2`.

    """

    g = Graph(directed=directed)
    libgraph_tool_generation.circular(g._Graph__graph, N, k, directed, self_loops)
    return g

1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

def geometric_graph(points, radius, ranges=None):
    r"""
    Generate a geometric network form a set of N-dimensional points.