blockmodel.py 121 KB
Newer Older
1
2
3
4
5
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2015 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import division, absolute_import, print_function
import sys
if sys.version_info < (3,):
    range = xrange

26
27
from .. import _degree, _prop, Graph, GraphView, libcore, _get_rng, PropertyMap
from .. stats import label_self_loops
28
from .. spectral import adjacency
29
30
import random
from numpy import *
31
import numpy
32
33
from scipy.optimize import fsolve, fminbound
import scipy.special
34
from collections import defaultdict
35
36
import copy
import heapq
37
38
39
40

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_community as libcommunity")

41
__test__ = False
42

43
44
45
46
47
48
49
50
def set_test(test):
    global __test__
    __test__ = test

def _bm_test():
    global __test__
    return __test__

51
52
53
54
55
56
57
58
59
60
61
62
def get_block_graph(g, B, b, vcount, ecount):
    cg, br, vcount, ecount = condensation_graph(g, b,
                                                vweight=vcount,
                                                eweight=ecount,
                                                self_loops=True)[:4]
    cg.vp["count"] = vcount
    cg.ep["count"] = ecount
    cg = Graph(cg, vorder=br)

    cg.add_vertex(B - cg.num_vertices())
    return cg

63
64
65
66
67
68
69
70
class BlockState(object):
    r"""This class encapsulates the block state of a given graph.

    This must be instantiated and used by functions such as :func:`mcmc_sweep`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
71
        Graph to be modelled.
72
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
73
        Edge multiplicities (for multigraphs or block graphs).
74
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
75
        Vertex multiplicities (for block graphs).
76
77
78
79
80
81
82
83
    b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Initial block labels on the vertices. If not supplied, it will be
        randomly sampled.
    B : ``int`` (optional, default: ``None``)
        Number of blocks. If not supplied it will be either obtained from the
        parameter ``b``, or set to the maximum possible value according to the
        minimum description length.
    clabel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
84
85
        Constraint labels on the vertices. If supplied, vertices with different
        label values will not be clustered in the same group.
86
87
88
    deg_corr : ``bool`` (optional, default: ``True``)
        If ``True``, the degree-corrected version of the blockmodel ensemble will
        be assumed, otherwise the traditional variant will be used.
89
90
91
92
    max_BE : ``int`` (optional, default: ``1000``)
        If the number of blocks exceeds this number, a sparse representation of
        the block graph is used, which is slightly less efficient, but uses less
        memory,
93
94
    """

95
96
    _state_ref_count = 0

97
    def __init__(self, g, eweight=None, vweight=None, b=None,
98
99
                 B=None, clabel=None, deg_corr=True,
                 max_BE=1000, **kwargs):
100
101
        BlockState._state_ref_count += 1

102
        # initialize weights to unity, if necessary
103
104
        if eweight is None:
            eweight = g.new_edge_property("int")
105
            eweight.fa = 1
106
107
108
109
        elif eweight.value_type() != "int32_t":
            eweight = eweight.copy(value_type="int32_t")
        if vweight is None:
            vweight = g.new_vertex_property("int")
110
            vweight.fa = 1
111
112
        elif vweight.value_type() != "int32_t":
            vweight = vweight.copy(value_type="int32_t")
113
114
115
        self.eweight = g.own_property(eweight)
        self.vweight = g.own_property(vweight)

116
117
118
119
        self.is_weighted = False
        if ((g.num_edges() > 0 and self.eweight.fa.max() > 1) or
            kwargs.get("force_weighted", False)):
            self.is_weighted = True
120
121
122

        # configure the main graph and block model parameters
        self.g = g
123

124
125
        self.E = int(self.eweight.fa.sum())
        self.N = int(self.vweight.fa.sum())
126
127
128

        self.deg_corr = deg_corr

129
        # ensure we have at most as many blocks as nodes
130
        if B is not None and b is None:
131
132
            B = min(B, self.g.num_vertices())

133
        if b is None:
134
            # create a random partition into B blocks.
135
136
            if B is None:
                B = get_max_B(self.N, self.E, directed=g.is_directed())
137
138
            B = min(B, self.g.num_vertices())
            ba = random.randint(0, B, self.g.num_vertices())
139
            ba[:B] = arange(B)        # avoid empty blocks
140
141
            if B < self.g.num_vertices():
                random.shuffle(ba)
142
            b = g.new_vertex_property("int")
143
            b.fa = ba
144
145
            self.b = b
        else:
146
147
148
149
150
151
            # if a partition is available, we will incorporate it.
            if isinstance(b, numpy.ndarray):
                self.b = g.new_vertex_property("int")
                self.b.fa = b
            else:
                self.b = b = g.own_property(b.copy(value_type="int"))
152
            if B is None:
153
154
155
156
                B = int(self.b.fa.max()) + 1

        # if B > self.N:
        #     raise ValueError("B > N!")
157

158
        if self.b.fa.max() >= B:
159
            raise ValueError("Maximum value of b is larger or equal to B! (%d vs %d)" % (self.b.fa.max(), B))
160
161

        # Construct block-graph
162
        self.bg = get_block_graph(g, B, self.b, self.vweight, self.eweight)
163
164
165
166
        self.bg.set_fast_edge_removal()

        self.mrs = self.bg.ep["count"]
        self.wr = self.bg.vp["count"]
167

168
169
170
171
172
173
174
175
176
        del self.bg.ep["count"]
        del self.bg.vp["count"]

        self.mrp = self.bg.degree_property_map("out", weight=self.mrs)

        if g.is_directed():
            self.mrm = self.bg.degree_property_map("in", weight=self.mrs)
        else:
            self.mrm = self.mrp
177
178
179

        self.vertices = libcommunity.get_vector(B)
        self.vertices.a = arange(B)
180
        self.B = B
181

182
183
        if clabel is not None:
            if isinstance(clabel, PropertyMap):
184
                self.clabel = self.g.own_property(clabel.copy())
185
186
187
188
            else:
                self.clabel = self.g.new_vertex_property("int")
                self.clabel.a = clabel
        else:
189
190
191
192
193
194
195
            self.clabel = self.g.new_vertex_property("int")

        self.emat = None
        if max_BE is None:
            max_BE = 1000
        self.max_BE = max_BE

196
        self.overlap = False
197
198
199
        self.ignore_degrees = kwargs.get("ignore_degrees", None)
        if self.ignore_degrees is None:
            self.ignore_degrees = g.new_vertex_property("bool", False)
200

201
202
203
204
        # used by mcmc_sweep()
        self.egroups = None
        self.nsampler = None
        self.sweep_vertices = None
205
206
        self.overlap_stats = libcommunity.overlap_stats()
        self.partition_stats = libcommunity.partition_stats()
207
        self.edges_dl = False
208

209
        # computation cache
210
211
212
213
214
        E = g.num_edges()
        N = g.num_vertices()
        libcommunity.init_safelog(int(5 * max(E, N)))
        libcommunity.init_xlogx(int(5 * max(E, N)))
        libcommunity.init_lgamma(int(3 * max(E, N)))
215

216
    def __del__(self):
Tiago Peixoto's avatar
Tiago Peixoto committed
217
218
219
220
221
222
        try:
            BlockState._state_ref_count -= 1
            if BlockState._state_ref_count == 0:
                libcommunity.clear_safelog()
                libcommunity.clear_xlogx()
                libcommunity.clear_lgamma()
223
        except (ValueError, AttributeError, TypeError):
Tiago Peixoto's avatar
Tiago Peixoto committed
224
            pass
225

226
227
228
229
230
231
    def __repr__(self):
        return "<BlockState object with %d blocks,%s for graph %s, at 0x%x>" % \
            (self.B, " degree corrected," if self.deg_corr else "", str(self.g),
             id(self))


232
233
    def __init_partition_stats(self, empty=True, edges_dl=False):
        self.edges_dl = edges_dl
234
235
236
237
        if not empty:
            self.partition_stats = libcommunity.init_partition_stats(self.g._Graph__graph,
                                                                     _prop("v", self.g, self.b),
                                                                     _prop("e", self.g, self.eweight),
238
                                                                     self.N, self.B,
239
240
                                                                     edges_dl,
                                                                     _prop("v", self.g, self.ignore_degrees))
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        else:
            self.partition_stats = libcommunity.partition_stats()



    def copy(self, b=None, B=None, deg_corr=None, clabel=None, overlap=False):
        r"""Copies the block state. The parameters override the state properties, and
         have the same meaning as in the constructor. If ``overlap=True`` an
         instance of :class:`~graph_tool.community.OverlapBlockState` is
         returned."""

        if not overlap:
            state = BlockState(self.g,
                               eweight=self.eweight,
                               vweight=self.vweight,
                               b=self.b.copy() if b is None else b,
                               B=(self.B if b is None else None) if B is None else B,
                               clabel=self.clabel if clabel is None else clabel,
                               deg_corr=self.deg_corr if deg_corr is None else deg_corr,
260
261
                               max_BE=self.max_BE,
                               ignore_degrees=self.ignore_degrees)
262
263
264
265
266
267
268
269
270
271
272
273
274
        else:
            state = OverlapBlockState(self.g,
                                      b=b if b is not None else self.b,
                                      B=(self.B if b is None else None) if B is None else B,
                                      clabel=self.clabel if clabel is None else clabel,
                                      deg_corr=self.deg_corr if deg_corr is None else deg_corr,
                                      max_BE=self.max_BE)

        if not state.__check_clabel():
            b = state.b.a + state.clabel.a * state.B
            continuous_map(b)
            state = state.copy(b=b)

275
            if _bm_test():
276
277
278
279
280
281
282
283
284
285
286
287
288
                assert state.__check_clabel()

        return state


    def __getstate__(self):
        state = dict(g=self.g,
                     eweight=self.eweight,
                     vweight=self.vweight,
                     b=self.b,
                     B=self.B,
                     clabel=self.clabel,
                     deg_corr=self.deg_corr,
289
290
                     max_BE=self.max_BE,
                     ignore_degrees=self.ignore_degrees)
291
292
293
294
295
296
        return state

    def __setstate__(self, state):
        self.__init__(**state)
        return state

297
298
    def get_block_state(self, b=None, vweight=False, deg_corr=False,
                        overlap=False, **kwargs):
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        r"""Returns a :class:`~graph_tool.community.BlockState`` corresponding to the
        block graph. The parameters have the same meaning as the in the constructor."""


        state = BlockState(self.bg, eweight=self.mrs,
                           vweight=self.wr if vweight else None,
                           b=self.bg.vertex_index.copy("int") if b is None else b,
                           clabel=self.get_bclabel(),
                           deg_corr=deg_corr,
                           max_BE=self.max_BE)
        if overlap:
            state = state.copy(overlap=True)
        n_map = self.b.copy()
        return state, n_map

    def get_bclabel(self):
        r"""Returns a :class:`~graph_tool.PropertyMap`` corresponding to constraint
        labels for the block graph."""

        bclabel = self.bg.new_vertex_property("int")
        reverse_map(self.b, bclabel)
        pmap(bclabel, self.clabel)
        return bclabel

    def __check_clabel(self):
        b = self.b.a + self.clabel.a * self.B
        continuous_map(b)
        b2 = self.b.copy()
        continuous_map(b2.a)
        return (b == b2.a).all()

330
331
332
333
    def __get_emat(self):
        if self.emat is None:
            self.__regen_emat()
        return self.emat
334
335

    def __regen_emat(self):
336
337
338
339
        if self.B <= self.max_BE:
            self.emat = libcommunity.create_emat(self.bg._Graph__graph)
        else:
            self.emat = libcommunity.create_ehash(self.bg._Graph__graph)
340

341
    def __build_egroups(self, empty=False):
342
343
        self.esrcpos = self.g.new_edge_property("int")
        self.etgtpos = self.g.new_edge_property("int")
344

345
        self.egroups = libcommunity.build_egroups(self.g._Graph__graph,
346
347
348
349
350
                                                  self.bg._Graph__graph,
                                                  _prop("v", self.g, self.b),
                                                  _prop("e", self.g, self.eweight),
                                                  _prop("e", self.g, self.esrcpos),
                                                  _prop("e", self.g, self.etgtpos),
351
                                                  self.is_weighted, empty)
352

353
    def __build_nsampler(self, empty=False):
354
        self.nsampler = libcommunity.init_neighbour_sampler(self.g._Graph__graph,
355
                                                            _prop("e", self.g, self.eweight),
356
                                                            True, empty)
357
358
359
360
361
362

    def __cleanup_bg(self):
        emask = self.bg.new_edge_property("bool")
        emask.a = self.mrs.a[:len(emask.a)] > 0
        self.bg.set_edge_filter(emask)
        self.bg.purge_edges()
363
        self.emat = None
364
365
366
367
368
369
370
371
372
373

    def get_blocks(self):
        r"""Returns the property map which contains the block labels for each vertex."""
        return self.b

    def get_bg(self):
        r"""Returns the block graph."""
        return self.bg

    def get_ers(self):
374
375
        r"""Returns the edge property map of the block graph which contains the :math:`e_{rs}` matrix entries.
        For undirected graphs, the diagonal values (self-loops) contain :math:`e_{rr}/2`."""
376
377
378
379
380
381
382
383
        return self.mrs

    def get_er(self):
        r"""Returns the vertex property map of the block graph which contains the number
        :math:`e_r` of half-edges incident on block :math:`r`. If the graph is
        directed, a pair of property maps is returned, with the number of
        out-edges :math:`e^+_r` and in-edges :math:`e^-_r`, respectively."""
        if self.bg.is_directed():
384
            return self.mrp, self.mrm
385
386
387
388
389
390
391
        else:
            return self.mrp

    def get_nr(self):
        r"""Returns the vertex property map of the block graph which contains the block sizes :math:`n_r`."""
        return self.wr

392
393
394
    def entropy(self, complete=True, dl=False, partition_dl=True,
                degree_dl=True, edges_dl=True, dense=False, multigraph=True,
                norm=False, dl_ent=False, **kwargs):
395
        r"""Calculate the entropy associated with the current block partition.
396
397
398
399
400
401
402
403

        Parameters
        ----------
        complete : ``bool`` (optional, default: ``False``)
            If ``True``, the complete entropy will be returned, including constant
            terms not relevant to the block partition.
        dl : ``bool`` (optional, default: ``False``)
            If ``True``, the full description length will be returned.
404
405
406
407
408
409
410
411
        partition_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the partition description length
            will be considered.
        edges_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the edge matrix description length
            will be considered.
        degree_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the degree sequence description
412
            length will be considered.
413
414
415
        dense : ``bool`` (optional, default: ``False``)
            If ``True``, the "dense" variant of the entropy will be computed.
        multigraph : ``bool`` (optional, default: ``False``)
416
417
418
419
420
421
422
            If ``True``, the multigraph entropy will be used.
        norm : ``bool`` (optional, default: ``True``)
            If ``True``, the entropy will be "normalized" by dividing by the
            number of edges.
        dl_ent : ``bool`` (optional, default: ``False``)
            If ``True``, the description length of the degree sequence will be
            approximated by its entropy.
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

        Notes
        -----
        For the traditional blockmodel (``deg_corr == False``), the entropy is
        given by

        .. math::

          \mathcal{S}_t &\cong E - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
          \mathcal{S}^d_t &\cong E - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

        for undirected and directed graphs, respectively, where :math:`e_{rs}`
        is the number of edges from block :math:`r` to :math:`s` (or the number
        of half-edges for the undirected case when :math:`r=s`), and :math:`n_r`
        is the number of vertices in block :math:`r` .

        For the degree-corrected variant with "hard" degree constraints the
        equivalent expressions are

        .. math::

            \mathcal{S}_c &\cong -E -\sum_kN_k\ln k! - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
            \mathcal{S}^d_c &\cong -E -\sum_{k^+}N_{k^+}\ln k^+!  -\sum_{k^-}N_{k^-}\ln k^-! - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

        where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
        block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
449
        \sum_se_{sr}` are the numbers of out- and in-edges adjacent to block
450
451
        :math:`r`, respectively.

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        If ``dense == False`` and ``multigraph == True``, the entropy used will
        be of the "Poisson" model, with the additional term:

        .. math::

            {\mathcal{S}_{cm}^{(d)}} = \mathcal{S}_c^{(d)} + \sum_{i>j} \ln A_{ij}! + \sum_i \ln A_{ii}!!


        If ``dl == True``, the description length :math:`\mathcal{L}_t` of the
        model will be returned as well, as described in
        :func:`model_entropy`. Note that for the degree-corrected version the
        description length is

        .. math::

            \mathcal{L}_c = \mathcal{L}_t + \sum_r\min\left(\mathcal{L}^{(1)}_r, \mathcal{L}^{(2)}_r\right),

        with

        .. math::

              \mathcal{L}^{(1)}_r &= \ln{\left(\!\!{n_r \choose e_r}\!\!\right)}, \\
              \mathcal{L}^{(2)}_r &= \ln\Xi_r + \ln n_r! - \sum_k \ln n^r_k!,

        and :math:`\ln\Xi_r \simeq 2\sqrt{\zeta(2)e_r}`, where :math:`\zeta(x)`
        is the `Riemann zeta function
        <https://en.wikipedia.org/wiki/Riemann_zeta_function>`_, and
        :math:`n^r_k` is the number of nodes in block :math:`r` with degree
        :math:`k`. For directed graphs we have instead :math:`k \to (k^-, k^+)`,
        and :math:`\ln\Xi_r \to \ln\Xi^+_r + \ln\Xi^-_r` with :math:`\ln\Xi_r^+
        \simeq 2\sqrt{\zeta(2)e^+_r}` and :math:`\ln\Xi_r^- \simeq
        2\sqrt{\zeta(2)e^-_r}`.

        If ``dl_ent=True`` is passed, this will be approximated instead by
486
487
488

        .. math::

489
            \mathcal{L}_c \simeq \mathcal{L}_t - \sum_rn_r\sum_kp^r_k\ln p^r_k,
490

491
        where :math:`p^r_k = n^r_k / n_r`.
492

493
494
        If the "dense" entropies are requested (``dense=True``), they will be
        computed as
495
496
497
498
499
500
501
502
503
504
505
506
507

        .. math::

            \mathcal{S}_t  &= \sum_{r>s} \ln{\textstyle {n_rn_s \choose e_{rs}}} + \sum_r \ln{\textstyle {{n_r\choose 2}\choose e_{rr}/2}}\\
            \mathcal{S}^d_t  &= \sum_{rs} \ln{\textstyle {n_rn_s \choose e_{rs}}},

        for simple graphs, and

        .. math::

            \mathcal{S}_m  &= \sum_{r>s} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)} + \sum_r \ln{\textstyle \left(\!\!{\left(\!{n_r\choose 2}\!\right)\choose e_{rr}/2}\!\!\right)}\\
            \mathcal{S}^d_m  &= \sum_{rs} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)},

508
509
510
        for multigraphs (i.e. ``multigraph == True``). A dense entropy for the
        degree-corrected model is not available, and if requested will return a
        :exc:`NotImplementedError`.
511

512
513
        If ``complete == False`` constants in the above equations which do not
        depend on the partition of the nodes will be omitted.
514

515
516
        Note that in all cases if ``norm==True`` the value returned corresponds
        to the entropy `per edge`, i.e. :math:`(\mathcal{S}_{t/c}\; [\,+\,\mathcal{L}_{t/c}])/ E`.
517
518
        """

519
520
521
        xi_fast = kwargs.get("xi_fast", False)
        dl_deg_alt = kwargs.get("dl_deg_alt", True)

522
523
524
        E = self.E
        N = self.N

525
526
        if dense:
            if self.deg_corr:
527
                raise NotImplementedError('A degree-corrected "dense" entropy is not yet implemented')
528

529
            S = libcommunity.entropy_dense(self.bg._Graph__graph,
530
531
532
                                            _prop("e", self.bg, self.mrs),
                                            _prop("v", self.bg, self.wr),
                                            multigraph)
533
534
        else:
            S = libcommunity.entropy(self.bg._Graph__graph,
535
536
537
538
539
                                      _prop("e", self.bg, self.mrs),
                                      _prop("v", self.bg, self.mrp),
                                      _prop("v", self.bg, self.mrm),
                                      _prop("v", self.bg, self.wr),
                                      self.deg_corr)
540

541
            if _bm_test():
542
543
544
                assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                random=random, dl=dl,
                                                                                                partition_dl=partition_dl,
545
                                                                                                edges_dl=edges_dl,
546
547
                                                                                                dense=dense, multigraph=multigraph,
                                                                                                norm=norm)))
548
549
550
551
552
            if self.deg_corr:
                S -= E
            else:
                S += E

553
554
            if complete:
                if self.deg_corr:
555
556
557
                    S += libcommunity.deg_entropy_term(self.g._Graph__graph,
                                                       libcore.any(),
                                                       self.overlap_stats,
558
559
560
                                                       self.N,
                                                       _prop("e", self.g, self.eweight),
                                                       _prop("v", self.g, self.ignore_degrees))
561

562
563
564
565
                if multigraph:
                    S += libcommunity.entropy_parallel(self.g._Graph__graph,
                                                       _prop("e", self.g, self.eweight))

566
                if _bm_test():
567
568
569
                    assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                    random=random, dl=dl,
                                                                                                    partition_dl=partition_dl,
570
                                                                                                    edges_dl=edges_dl,
571
572
                                                                                                    dense=dense, multigraph=multigraph,
                                                                                                    norm=norm)))
573
        if dl:
574
575
576
577
578
579
580
581
            if partition_dl:
                if self.partition_stats.is_enabled():
                    S += self.partition_stats.get_partition_dl()
                else:
                    self.__init_partition_stats(empty=False)
                    S += self.partition_stats.get_partition_dl()
                    self.__init_partition_stats(empty=True)

582
                if _bm_test():
583
584
585
                    assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                    random=random, dl=dl,
                                                                                                    partition_dl=partition_dl,
586
                                                                                                    edges_dl=edges_dl,
587
588
                                                                                                    dense=dense, multigraph=multigraph,
                                                                                                    norm=norm)))
589
590
591
            if edges_dl:
                actual_B = (self.wr.a > 0).sum()
                S += model_entropy(actual_B, N, E, directed=self.g.is_directed(), nr=False)
592

593
            if self.deg_corr and degree_dl:
594
595
596
597
598
599
                if self.partition_stats.is_enabled():
                    S_seq = self.partition_stats.get_deg_dl(dl_ent, dl_deg_alt, xi_fast)
                else:
                    self.__init_partition_stats(empty=False)
                    S_seq = self.partition_stats.get_deg_dl(dl_ent, dl_deg_alt, xi_fast)
                    self.__init_partition_stats(empty=True)
600

601
                S += S_seq
602

603
                if _bm_test():
604
605
606
                    assert not isnan(S_seq) and not isinf(S_seq), "invalid entropy %g (%s) " % (S_seq, str(dict(complete=complete,
                                                                                                                random=random, dl=dl,
                                                                                                                partition_dl=partition_dl,
607
                                                                                                                edges_dl=edges_dl,
608
609
610
                                                                                                                dense=dense, multigraph=multigraph,
                                                                                                                norm=norm)))

611
        if _bm_test():
612
613
614
            assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                            random=random, dl=dl,
                                                                                            partition_dl=partition_dl,
615
                                                                                            edges_dl=edges_dl,
616
617
618
619
620
621
622
                                                                                            dense=dense, multigraph=multigraph,
                                                                                            norm=norm)))

        if norm:
            return S / E
        else:
            return S
623

624
625
626
    def get_matrix(self):
        r"""Returns the block matrix (as a sparse :class:`~scipy.sparse.csr_matrix`),
        which contains the number of edges between each block pair.
627

628
629
630
631
632
633
        .. warning::

           This corresponds to the adjacency matrix of the block graph, which by
           convention includes twice the amount of edges in the diagonal entries
           if the graph is undirected.

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        Examples
        --------

        .. testsetup:: get_matrix

           gt.seed_rng(42)
           np.random.seed(42)
           from pylab import *

        .. doctest:: get_matrix

           >>> g = gt.collection.data["polbooks"]
           >>> state = gt.BlockState(g, B=5, deg_corr=True)
           >>> for i in range(1000):
           ...     ds, nmoves = gt.mcmc_sweep(state)
649
           >>> m = state.get_matrix()
650
651
           >>> figure()
           <...>
652
           >>> matshow(m.todense())
653
654
655
656
657
658
659
660
661
662
663
664
665
           <...>
           >>> savefig("bloc_mat.pdf")

        .. testcleanup:: get_matrix

           savefig("bloc_mat.png")

        .. figure:: bloc_mat.*
           :align: center

           A  5x5 block matrix.

       """
666

667
        return adjacency(self.bg, weight=self.mrs)
668
669


670
def model_entropy(B, N, E, directed=False, nr=None):
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    r"""Computes the amount of information necessary for the parameters of the traditional blockmodel ensemble, for ``B`` blocks, ``N`` vertices, ``E`` edges, and either a directed or undirected graph.

    A traditional blockmodel is defined as a set of :math:`N` vertices which can
    belong to one of :math:`B` blocks, and the matrix :math:`e_{rs}` describes
    the number of edges from block :math:`r` to :math:`s` (or twice that number
    if :math:`r=s` and the graph is undirected).

    For an undirected graph, the number of distinct :math:`e_{rs}` matrices is given by,

    .. math::

       \Omega_m = \left(\!\!{\left(\!{B \choose 2}\!\right) \choose E}\!\!\right)

    and for a directed graph,

    .. math::
       \Omega_m = \left(\!\!{B^2 \choose E}\!\!\right)


    where :math:`\left(\!{n \choose k}\!\right) = {n+k-1\choose k}` is the
    number of :math:`k` combinations with repetitions from a set of size :math:`n`.

    The total information necessary to describe the model is then,

    .. math::

697
698
       \mathcal{L}_t = \ln\Omega_m + \ln\left(\!\!{B \choose N}\!\!\right) + \ln N! - \sum_r \ln n_r!,

699

700
701
    where the remaining term is the information necessary to describe the
    block partition, where :math:`n_r` is the number of nodes in block :math:`r`.
702

703
704
    If ``nr`` is ``None``, it is assumed :math:`n_r=N/B`.

705
706
707
    References
    ----------

Tiago Peixoto's avatar
Tiago Peixoto committed
708
709
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
Tiago Peixoto's avatar
Tiago Peixoto committed
710
711
712
    .. [peixoto-hierarchical-2014] Tiago P. Peixoto, "Hierarchical block structures and high-resolution
       model selection in large networks ", Phys. Rev. X 4, 011047 (2014), :doi:`10.1103/PhysRevX.4.011047`,
       :arxiv:`1310.4377`.
713
714
715

    """

716
717
718
719
    if directed:
        x = (B * B);
    else:
        x = (B * (B + 1)) / 2;
720
721
722
723
724
    if nr is False:
        L = lbinom(x + E - 1, E)
    else:
        L = lbinom(x + E - 1, E) + partition_entropy(B, N, nr)
    return L
725

726
def lbinom(n, k):
727
    return scipy.special.gammaln(float(n + 1)) - scipy.special.gammaln(float(n - k + 1)) - scipy.special.gammaln(float(k + 1))
728

729
730
731
732
733
734
def lbinom_careful(n, k):
    return libcommunity.lbinom_careful(n, k)

def lbinom_fast(n, k):
    return libcommunity.lbinom_fast(n, k)

735
736
737
738
def partition_entropy(B, N, nr=None):
    if nr is None:
        S = N * log(B) + log1p(-(1 - 1./B) ** N)
    else:
739
        S = lbinom(B + N - 1, N) + scipy.special.gammaln(N + 1) - scipy.special.gammaln(nr + 1).sum()
740
    return S
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

def get_max_B(N, E, directed=False):
    r"""Return the maximum detectable number of blocks, obtained by minimizing:

    .. math::

        \mathcal{L}_t(B, N, E) - E\ln B

    where :math:`\mathcal{L}_t(B, N, E)` is the information necessary to
    describe a traditional blockmodel with `B` blocks, `N` nodes and `E`
    edges (see :func:`model_entropy`).

    Examples
    --------

    >>> gt.get_max_B(N=1e6, E=5e6)
    1572

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
761
762
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
763
764
765
766


    """

767
768
769
    def Sdl(B, S, N, E, directed=False):
        return S + model_entropy(B, N, E, directed) / E

770
771
772
773
    B = fminbound(lambda B: Sdl(B, -log(B), N, E, directed), 1, E,
                  xtol=1e-6, maxfun=1500, disp=0)
    if isnan(B):
        B = 1
774
    return min(N, max(int(ceil(B)), 2))
775

776
def get_akc(B, I, N=numpy.inf, directed=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
777
    r"""Return the minimum value of the average degree of the network, so that some block structure with :math:`B` blocks can be detected, according to the minimum description length criterion.
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

    This is obtained by solving

    .. math::

       \Sigma_b = \mathcal{L}_t(B, N, E) - E\mathcal{I}_{t/c} = 0,

    where :math:`\mathcal{L}_{t}` is the necessary information to describe the
    blockmodel parameters (see :func:`model_entropy`), and
    :math:`\mathcal{I}_{t/c}` characterizes the planted block structure, and is
    given by

    .. math::

        \mathcal{I}_t &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{w_rw_s}\right),\\
        \mathcal{I}_c &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{m_rm_s}\right),

    where :math:`m_{rs} = e_{rs}/2E` (or :math:`m_{rs} = e_{rs}/E` for directed
    graphs) and :math:`w_r=n_r/N`. We note that :math:`\mathcal{I}_{t/c}\in[0,
    \ln B]`. In the case where :math:`E \gg B^2`, this simplifies to

    .. math::

       \left<k\right>_c &= \frac{2\ln B}{\mathcal{I}_{t/c}},\\
       \left<k^{-/+}\right>_c &= \frac{\ln B}{\mathcal{I}_{t/c}},

    for undirected and directed graphs, respectively. This limit is assumed if
    ``N == inf``.

    Examples
    --------

    >>> gt.get_akc(10, log(10) / 100, N=100)
811
    2.414413200430159
812
813
814

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
815
816
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
817
818

    """
819
    if N != numpy.inf:
820
        if directed:
821
            get_dl = lambda ak: model_entropy(B, N, N * ak, directed) / N * ak - N * ak * I
822
        else:
823
            get_dl = lambda ak: model_entropy(B, N, N * ak / 2., directed) * 2 / (N * ak)  - N * ak * I / 2.
824
825
826
827
828
829
830
831
        ak = fsolve(lambda ak: get_dl(ak), 10)
        ak = float(ak)
    else:
        ak = 2 * log(B) / S
        if directed:
            ak /= 2
    return ak

832
833
def mcmc_sweep(state, beta=1., c=1., niter=1, dl=False, dense=False,
               multigraph=False, node_coherent=False, confine_layers=False,
834
               sequential=True, parallel=False, vertices=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
835
               target_blocks=None, verbose=False, **kwargs):
836
    r"""Performs a Markov chain Monte Carlo sweep on the network, to sample the block partition according to a probability :math:`\propto e^{-\beta \mathcal{S}_{t/c}}`, where :math:`\mathcal{S}_{t/c}` is the blockmodel entropy.
837
838
839

    Parameters
    ----------
840
    state : :class:`~graph_tool.community.BlockState`, :class:`~graph_tool.community.OverlapBlockState` or :class:`~graph_tool.community.CovariateBlockState`
841
        The block state.
842
    beta : ``float`` (optional, default: `1.0`)
843
        The inverse temperature parameter :math:`\beta`.
844
845
846
847
848
    c : ``float`` (optional, default: ``1.0``)
        This parameter specifies how often fully random moves are attempted,
        instead of more likely moves based on the inferred block partition.
        For ``c == 0``, no fully random moves are attempted, and for ``c == inf``
        they are always attempted.
849
850
    niter : ``int`` (optional, default: ``1``)
        Number of sweeps to perform.
851
852
853
    dl : ``bool`` (optional, default: ``False``)
        If ``True``, the change in the whole description length will be
        considered after each vertex move, not only the entropy.
854
855
856
857
858
    dense : ``bool`` (optional, default: ``False``)
        If ``True``, the "dense" variant of the entropy will be computed.
    multigraph : ``bool`` (optional, default: ``False``)
        If ``True``, the multigraph entropy will be used. Only has an effect
        if ``dense == True``.
859
860
861
862
    node_coherent : ``bool`` (optional, default: ``False``)
        If ``True``, and if the ``state`` is an instance of
        :class:`~graph_tool.community.OverlapBlockState`, then all half-edges
        incident on the same node are moved simultaneously.
863
864
865
866
867
    confine_layers : ``bool`` (optional, default: ``False``)
        If ``True``, and if the ``state`` is an instance of
        :class:`~graph_tool.community.CovariateBlockState`, with an
        *overlapping* partition, the half edges will only be moved in such a way
         that inside each layer the group membership remains non-overlapping.
868
869
870
871
872
    sequential : ``bool`` (optional, default: ``True``)
        If ``True``, the move attempts on the vertices are done in sequential
        random order. Otherwise a total of `N` moves attempts are made, where
        `N` is the number of vertices, where each vertex can be selected with
        equal probability.
873
874
875
876
877
878
879
880
881
882
    parallel : ``bool`` (optional, default: ``False``)
        If ``True``, the updates are performed in parallel (multiple
        threads).

        .. warning::

            If this is used, the Markov Chain is not guaranteed to be sampled with
            the correct probabilities. This is better used in conjunction with
            ``beta=float('inf')``, where this is not an issue.

Tiago Peixoto's avatar
Tiago Peixoto committed
883
    vertices : ``list of ints`` (optional, default: ``None``)
884
885
        A list of vertices which will be attempted to be moved. If ``None``, all
        vertices will be attempted.
886
887
888
    target_blocks : ``list of ints`` (optional, default: ``None``)
        A list of groups to which the corresponding vertices will to be forcibly
        moved. If ``None``, the standard MCMC rules will be applied.
889
890
891
892
893
894
    verbose : ``bool`` (optional, default: ``False``)
        If ``True``, verbose information is displayed.

    Returns
    -------

895
    dS : ``float``
896
       The entropy difference (in nats) after the sweeps.
897
898
899
900
901
902
903
    nmoves : ``int``
       The number of accepted block membership moves.


    Notes
    -----

904
    This algorithm performs a Markov chain Monte Carlo sweep on the network,
905
906
    where the block memberships are randomly moved, and either accepted or
    rejected, so that after sufficiently many sweeps the partitions are sampled
907
    with probability proportional to :math:`e^{-\beta\mathcal{S}_{t/c}}`, where
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    :math:`\mathcal{S}_{t/c}` is the blockmodel entropy, given by

    .. math::

      \mathcal{S}_t &\cong - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
      \mathcal{S}^d_t &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

    for undirected and directed traditional blockmodels (``deg_corr == False``),
    respectively, where :math:`e_{rs}` is the number of edges from block
    :math:`r` to :math:`s` (or the number of half-edges for the undirected case
    when :math:`r=s`), and :math:`n_r` is the number of vertices in block
    :math:`r`, and constant terms which are independent of the block partition
    were dropped (see :meth:`BlockState.entropy` for the complete entropy). For
    the degree-corrected variant with "hard" degree constraints the equivalent
    expressions are

    .. math::

       \mathcal{S}_c &\cong  - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
       \mathcal{S}^d_c &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

    where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
    block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
    \sum_se_{sr}` are the number of out- and in-edges adjacent to block
    :math:`r`, respectively.

    The Monte Carlo algorithm employed attempts to improve the mixing time of
935
936
    the Markov chain by proposing membership moves :math:`r\to s` with
    probability :math:`p(r\to s|t) \propto e_{ts} + c`, where :math:`t` is the
937
    block label of a random neighbour of the vertex being moved. See
938
    [peixoto-efficient-2014]_ for more details.
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

    This algorithm has a complexity of :math:`O(E)`, where :math:`E` is the
    number of edges in the network.

    Examples
    --------
    .. testsetup:: mcmc

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: mcmc

       >>> g = gt.collection.data["polbooks"]
       >>> state = gt.BlockState(g, B=3, deg_corr=True)
       >>> pv = None
       >>> for i in range(1000):        # remove part of the transient
       ...     ds, nmoves = gt.mcmc_sweep(state)
       >>> for i in range(1000):
       ...     ds, nmoves = gt.mcmc_sweep(state)
       ...     pv = gt.collect_vertex_marginals(state, pv)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.pdf")
       <...>

    .. testcleanup:: mcmc

       gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.png")

    .. figure:: polbooks_blocks_soft.*
       :align: center

       "Soft" block partition of a political books network with :math:`B=3`.

     References
    ----------

    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey,
       Samuel Leinhardt, "Stochastic blockmodels: First steps",
977
978
       Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.,
       :doi:`10.1016/0378-8733(83)90021-7`
979
980
    .. [faust-blockmodels-1992] Katherine Faust, and Stanley
       Wasserman. "Blockmodels: Interpretation and Evaluation." Social Networks
981
       14, no. 1-2 (1992): 5-61. :doi:`10.1016/0378-8733(92)90013-W`
982
983
984
985
    .. [karrer-stochastic-2011] Brian Karrer, and M. E. J. Newman. "Stochastic
       Blockmodels and Community Structure in Networks." Physical Review E 83,
       no. 1 (2011): 016107. :doi:`10.1103/PhysRevE.83.016107`.
    .. [peixoto-entropy-2012] Tiago P. Peixoto "Entropy of Stochastic Blockmodel
986
987
988
989
990
       Ensembles." Physical Review E 85, no. 5 (2012): 056122.
       :doi:`10.1103/PhysRevE.85.056122`, :arxiv:`1112.6028`.
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module
       inference in large networks", Phys. Rev. Lett. 110, 148701 (2013),
       :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
991
    .. [peixoto-efficient-2014] Tiago P. Peixoto, "Efficient Monte Carlo and greedy
992
993
994
       heuristic for the inference of stochastic block models", Phys. Rev. E 89,
       012804 (2014), :doi:`10.1103/PhysRevE.89.012804`, :arxiv:`1310.4378`.
    .. [peixoto-model-2015] Tiago P. Peixoto, "Model selection and hypothesis
995
       testing for large-scale network models with overlapping groups",
996
       Phys. Rev. X 5, 011033 (2015), :doi:`10.1103/PhysRevX.5.011033`,
997
       :arxiv:`1409.3059`.
998
999
    """

1000
    nmerges = kwargs.get("nmerges", 0)
For faster browsing, not all history is shown. View entire blame