__init__.py 59.1 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2013 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
51
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
52
   is_DAG
53
   is_planar
54
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
55
   edge_reciprocity
56
57
58

Contents
++++++++
59

60
61
"""

62
63
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
64
from .. dl_import import dl_import
65
dl_import("from . import libgraph_tool_topology")
66

67
from .. import _prop, Vector_int32_t, _check_prop_writable, \
68
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
     libcore, _get_rng
70
import random, sys, numpy
71
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
72
           "max_cardinality_matching", "max_independent_vertex_set",
73
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
74
           "topological_sort", "transitive_closure", "tsp_tour",
75
76
77
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
           "label_out_component", "shortest_distance", "shortest_path",
Tiago Peixoto's avatar
Tiago Peixoto committed
78
           "pseudo_diameter", "is_bipartite", "is_DAG", "is_planar",
79
           "make_maximal_planar", "similarity", "edge_reciprocity"]
80
81
82
83
84
85
86
87
88
89


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
90
        Second graph to be compared.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
117
118
119
120
121
122
123
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

124
125
126
127
128
129
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
Tiago Peixoto's avatar
Tiago Peixoto committed
130
    0.05
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
147

Tiago Peixoto's avatar
Tiago Peixoto committed
148

149
def isomorphism(g1, g2, isomap=False):
150
151
152
153
154
155
156
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
157
158
159
160
161
162
163
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

164
165
166
167
168
169
170
171
172
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

173
    """
174
175
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
176
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
177
                             _prop("v", g1, imap))
178
179
180
181
182
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
183

184
def subgraph_isomorphism(sub, g, max_n=0, random=False):
185
    r"""
186
187
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
188

189

Tiago Peixoto's avatar
Tiago Peixoto committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
    max_n : int (optional, default: 0)
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
    random : bool (optional, default: False)
        If `True`, the vertices of `g` are indexed in random order before
        the search.

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.
    edge_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing edge property map objects which indicate different
        isomorphism mappings. The property maps edges in `sub` to the
        corresponding edge index in `g`.

    Notes
    -----
    The algorithm used is described in [ullmann-algorithm-1976]_. It has a
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
220
221
222

    Examples
    --------
223
224
225
226
227
228
229
230
231
232
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(44)
       gt.seed_rng(44)

    >>> from numpy.random import poisson
    >>> g = gt.random_graph(30, lambda: (poisson(6.0), poisson(6.0)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.9), poisson(1.9)))
233
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
234
    >>> print(len(vm))
Tiago Peixoto's avatar
Tiago Peixoto committed
235
    5632
236
    >>> for i in range(len(vm)):
237
238
239
240
241
242
243
244
245
246
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
247
248
249
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
250
    ...               output="subgraph-iso-embed.pdf")
251
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
252
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
253
254
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
255
256
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
257

258

Tiago Peixoto's avatar
Tiago Peixoto committed
259
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
260
261
262

    References
    ----------
263
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
264
       isomorphism", Journal of the ACM 23 (1): 31-42, 1976, :doi:`10.1145/321921.321925`
265
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
266
267

    """
268
269
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
270
271
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
272
273
    vlabels=(None, None)
    elabels=(None, None)
274
275
    vmaps = []
    emaps = []
276
    if random:
277
        rng = _get_rng()
278
    else:
279
        rng = libcore.rng_t()
280
281
282
283
284
285
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
286
                                vmaps, emaps, max_n, rng)
287
    for i in range(len(vmaps)):
288
289
290
291
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
292

293
294
295
296
297
298
299
300
301
302
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
303
    `sub`.
304
    """
305
    if vmask is None:
306
        vmask = g.new_vertex_property("bool")
307
    if emask is None:
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
322

Tiago Peixoto's avatar
Tiago Peixoto committed
323

324
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
325
326
327
328
329
330
331
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
332
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
333
334
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
335
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
336
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
337
        is used. Otherwise, Kruskal's algorithm is used.
338
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
354
355
356
357
358
359
360
361
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
362
363
364
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
365
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
366
    >>> tree = gt.min_spanning_tree(g, weights=weight)
367
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
368
369
    <...>
    >>> g.set_edge_filter(tree)
370
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
371
372
373
    <...>


374
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
375
        :width: 400px
376
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
377
        :width: 400px
378
379

    *Left:* Original graph, *Right:* The minimum spanning tree.
380
381
382
383
384

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
385
386
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
387
388
389
390
391
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
392
    if tree_map is None:
393
394
395
396
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
412
    return tree_map
413

Tiago Peixoto's avatar
Tiago Peixoto committed
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
444
445
446
447
448
449
450
451
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
452
453
454
455
456
457
458
459
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
460
    >>> gt.graph_draw(g, pos=pos, output="triang_random_span_tree.pdf")
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    <...>


    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
    g = GraphView(g, vfilt=l)

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
496
                             _prop("e", g, tree_map), _get_rng())
497
498
499
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
527
528
529
530
531
532
533
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
534
535
536
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
537
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
538
    >>> dom = gt.dominator_tree(g, root[0])
539
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
540
541
    [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
      0  0  0 78  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
542
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Tiago Peixoto's avatar
Tiago Peixoto committed
543
      0  0  0 15  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
544
545
546

    References
    ----------
547
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
548
549

    """
550
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
551
552
553
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
554
555
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
556
        raise ValueError("dominator tree requires a directed graph.")
557
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
558
559
560
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
561

Tiago Peixoto's avatar
Tiago Peixoto committed
562

563
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
578
579
580
581
582
583
584
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
585
586
587
588
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
589
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
590
591
    [17  1 20  5  6  8 28  0  3  9 11 24 29  2 22  4  7 14 19 26 23 10 12 13 15
     16 18 21 25 27]
Tiago Peixoto's avatar
Tiago Peixoto committed
592
593
594

    References
    ----------
595
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
596
597
598
599
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

600
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
601
602
603
604
605
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
    return topological_order.a.copy()
606

Tiago Peixoto's avatar
Tiago Peixoto committed
607

608
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
609
610
611
612
613
614
615
616
617
618
619
620
621
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
622
623
624
625
626
627
628
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
629
630
631
632
633
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
634
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
635
636
637
638
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

639
640
641
642
643
644
645
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
646

647
648
def label_components(g, vprop=None, directed=None):
    """
649
    Label the components to which each vertex in the graph belongs. If the
650
651
    graph is directed, it finds the strongly connected components.

652
653
654
    A property map with the component labels is returned, together with an
    histogram of component labels.

655
656
    Parameters
    ----------
657
    g : :class:`~graph_tool.Graph`
658
        Graph to be used.
659
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
660
661
662
663
664
665
666
667
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
668
    comp : :class:`~graph_tool.PropertyMap`
669
        Vertex property map with component labels.
670
671
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
672
673
674
675
676
677

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

678
    The algorithm runs in :math:`O(V + E)` time.
679
680
681

    Examples
    --------
682
683
684
685
686
687
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

688
    >>> g = gt.random_graph(100, lambda: (1, 1))
689
    >>> comp, hist = gt.label_components(g)
690
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
691
692
693
    [0 1 1 1 2 1 3 1 4 0 0 4 2 0 0 2 1 1 2 1 0 4 1 5 2 4 0 1 1 1 1 0 4 5 1 1 4
     0 4 1 4 4 2 1 4 4 1 2 3 0 0 4 2 4 2 4 4 4 4 1 4 2 0 1 1 2 4 2 2 4 5 4 0 2
     1 1 4 1 0 1 2 1 0 0 4 0 1 4 2 4 0 4 4 1 1 1 0 2 1 1]
694
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
695
    [19 32 17  2 27  3]
696
697
    """

698
    if vprop is None:
699
700
701
702
703
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

704
705
    if directed is not None:
        g = GraphView(g, directed=directed)
706

707
708
709
710
711
712
713
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
714
715
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
716
717
718
719
720
721
722
723
724
725
726
727
728
729

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
730
         Boolean vertex property map which labels the largest component.
731
732
733
734
735
736
737

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
738
739
740
741
742
743
744
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

745
746
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
747
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
748
749
750
    [0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0]
751
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
752
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
753
    10
754
755
756
757
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
758
759
760
761
762
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
763
    return label
764

Tiago Peixoto's avatar
Tiago Peixoto committed
765

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
789
790
791
792
793
794
795
796
797
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
798
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
799
800
801
    [1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0]
802
803
804

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
805
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
806
    ...                            g.vertex(1))
807
    >>> print(l.a)
808
    [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tiago Peixoto's avatar
Tiago Peixoto committed
809
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
810
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
811
812
813
814
815
816
817
818
819
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


820
def label_biconnected_components(g, eprop=None, vprop=None):
821
822
823
824
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

825
826
827
828
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
872
873
874
875
876
877
878
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

879
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
880
    >>> comp, art, hist = gt.label_biconnected_components(g)
881
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
882
883
884
    [1 1 0 1 0 1 1 2 1 1 3 3 0 2 2 1 1 3 2 1 0 1 1 1 1 3 1 2 1 3 4 3 1 1 4 0 0
     0 1 1 1 1 2 1 1 2 2 2 2 0 1 0 1 1 1 1 2 2 1 1 1 1 1 0 1 1 0 0 1 0 1 4 1 2
     1 1 1 1 0 1 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 3 1 3 1 3]
885
    >>> print(art.a)
886
887
888
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
889
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
890
    [14 59 14  9  4]
891
    """
892

893
    if vprop is None:
894
        vprop = g.new_vertex_property("bool")
895
    if eprop is None:
896
897
898
899
900
901
902
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

903
904
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
905
906
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
907
    return eprop, vprop, hist
908

Tiago Peixoto's avatar
Tiago Peixoto committed
909

910
def shortest_distance(g, source=None, weights=None, max_dist=None,
911
912
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
913
914
915
916
917
918
919
920
921
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
922
        Source vertex of the search. If unspecified, the all pairs shortest
923
924
925
926
927
928
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
929
        are searched. This parameter has no effect if source is None.
930
931
932
933
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
934
935
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
936
937
938
939
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
940
941
942
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
965
966
967
968
969
970
971
972
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
973
974
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
975
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
    [         0          4          4          4 2147483647 2147483647
              6          7          6          4          5          5
              6          4          6          7          4          6
              6          1          7          5          6          3
              5          7          5          6          7          7
              8          6          5          4          5          7
              6          7          6          6 2147483647          6
              3          7          5          6          7          5
              8          5          6          5          4          6
              6          4          7          9          6          3
              7          6          3          5          7          4
              6          8          7          6 2147483647 2147483647
              2          5          6          5          7          6
              6          5          7          5          5          4
              7          6          6          5          3          6
              6          8          5          4          5          6
              5          6          7          4]
993

994
    >>> dist = gt.shortest_distance(g)
995
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    [         0          4          4          4 2147483647 2147483647
              6          7          6          4          5          5
              6          4          6          7          4          6
              6          1          7          5          6          3
              5          7          5          6          7          7
              8          6          5          4          5          7
              6          7          6          6 2147483647          6
              3          7          5          6          7          5
              8          5          6          5          4          6
              6          4          7          9          6          3
              7          6          3          5          7          4
              6          8          7          6 2147483647 2147483647
              2          5          6          5          7          6
              6          5          7          5          5          4
              7          6          6          5          3          6
              6          8          5          4          5          6
              5          6          7          4]
1013
1014
1015
1016
1017

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1018
1019
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1020
1021
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1022
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1023
1024
1025
1026
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

1027
    if weights is None:
1028
1029
1030
1031
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1032
1033
    if dist_map is None:
        if source is not None:
1034
1035
1036
1037
1038
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1039
    if source is not None:
1040
1041
1042
1043
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1044
    if max_dist is None:
1045
1046
        max_dist = 0

1047
    if directed is not None:
1048
1049
1050
1051
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
1052
        if source is not None:
1053
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
1054
1055
1056
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
1057
                                             _prop("v", g, pmap),
1058
1059
1060
1061
1062
1063
1064
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
1065
        if directed is not None:
1066
            g.pop_filter(directed=True)
1067
    if source is not None and pred_map:
1068
1069
1070
1071
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
1083
    target : :class:`~graph_tool.Vertex`
1084
1085
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
1086
        The edge weights.
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1110
1111
1112
1113
1114
1115
1116
1117
1118
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(43)
       gt.seed_rng(43)

    >>> from numpy.random import poisson
    >>> g = gt.random_graph(300, lambda: (poisson(4), poisson(4)))
1119
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1120
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1121
    ['10', '267', '212', '158', '112', '160', '11']
1122
    >>> print([str(e) for e in elist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1123
    ['(10, 267)', '(267, 212)', '(212, 158)', '(158, 112)', '(112, 160)', '(160, 11)']
1124
1125
1126
1127
1128

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1129
1130
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1131
1132
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1133
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1134
1135
    """

1136
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
1137
1138
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
1139

Tiago Peixoto's avatar
Tiago Peixoto committed
1140
    if pred_map[target] == int(target):  # no path to source
1141
1142
1143
1144
1145
        return [], []

    vlist = [target]
    elist = []

1146
    if weights is not None:
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1160
                if weights is not None:
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1172

Tiago Peixoto's avatar
Tiago Peixoto committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1214
1215
1216
1217
1218
1219
1220
1221
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
1222
1223
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1224
    >>> print(dist)
1225
    10.0
1226
    >>> print(int(ends[0]), int(ends[1]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1227
    0 295
Tiago Peixoto's avatar
Tiago Peixoto committed
1228
1229
1230
1231
1232
1233
1234

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
1235
        source = g.vertex(0, use_index=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
def is_bipartite(g, partition=False):
    """
    Test if the graph is bipartite.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    partition : bool (optional, default: ``False``)
        If ``True``, return the two partitions in case the graph is bipartite.

    Returns
    -------
    is_bipartite : bool
        Whether or not the graph is bipartite.
    partition : :class:`~graph_tool.PropertyMap` (only if `partition=True`)
        A vertex property map with the graph partitioning (or `None`) if the
        graph is not bipartite.

    Notes
    -----

    An undirected graph is bipartite if one can partition its set of vertices
    into two sets, such that all edges go from one set to the other.

    This algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> is_bi, part = gt.is_bipartite(g, partition=True)
    >>> print(is_bi)
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1284
    >>> gt.graph_draw(g, vertex_fill_color=part, output_size=(300, 300), output="bipartite.pdf")
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    <...>

    .. figure:: bipartite.*
        :align: center

        Bipartition of a 2D lattice.

    References
    ----------
    .. [boost-bipartite] http://www.boost.org/libs/graph/doc/is_bipartite.html
    """

    if partition:
        part = g.new_vertex_property("bool")
    else:
        part = None
    g = GraphView(g, directed=False)
    is_bi = libgraph_tool_topology.is_bipartite(g._Graph__graph,
                                                _prop("v", g, part))
    if partition:
        return is_bi, part
    else:
        return is_bi


1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
1348
1349
1350
1351
1352
1353
1354
1355
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
1356
1357
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
1358
    >>> print(p)
1359
    True
1360
    >>> print(list(embed_order[g.vertex(0)]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1361
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1362
1363
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
1364
    >>> print(p)
1365
1366
    False
    >>> g.set_edge_filter(kur, True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1367
    >>> gt.graph_draw(g, output_size=(300, 300), output="kuratowski.pdf")
1368
1369
    <...>

1370
    .. figure:: kuratowski.*
1371
1372
1373
1374
1375
1376
1377
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
1378
1379
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
1404
    if embed is not None:
1405
        ret.append(embed)
1406
    if kur is not None:
1407
1408
1409
1410
1411
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)
1412

1413
1414
1415
1416
1417
1418
1419
1420

def make_maximal_planar(g, unfilter=False):
    """
    Add edges to the graph to make it maximally planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
1421
1422
        Graph to be used. It must be a biconnected planar graph with at least 3
        vertices.
1423
1424
1425
1426
1427
1428
1429
1430

    Notes
    -----

    A graph is maximal planar if no additional edges can be added to it without
    creating a non-planar graph. By Euler's formula, a maximal planar graph with
    V > 2 vertices always has 3V - 6 edges and 2V - 4 faces.

Tiago Peixoto's avatar
Tiago Peixoto committed
1431
1432
1433
    The input graph to make_maximal_planar() must be a biconnected planar graph
    with at least 3 vertices.

1434
1435
1436
1437
    This algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
1438
1439
1440
    >>> g = gt.lattice([42, 42])
    >>> gt.make_maximal_planar(g)
    >>> gt.is_planar(g)
1441
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1442
    >>> print(g.num_vertices(), g.num_edges())
1443
    1764 5286
Tiago Peixoto's avatar
Tiago Peixoto committed
1444
    >>> gt.graph_draw(g, output_size=(300, 300), output="maximal_planar.pdf")
1445
1446
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
1447
    .. figure:: maximal_planar.*
1448
1449
        :align: center

Tiago Peixoto's avatar
Tiago Peixoto committed
1450
        A maximally planar graph.
1451
1452
1453

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
1454
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/make_maximal_planar.html
1455
1456