__init__.py 41.5 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Important functions for assessing graph topology
--------------------------------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
40
41
42
43
   min_spanning_tree
   dominator_tree
   topological_sort
   transitive_closure
   label_components
   label_biconnected_components
44
   label_largest_component
45
   is_planar
46
47
48

Contents
++++++++
49

50
51
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
52
from .. dl_import import dl_import
53
dl_import("import libgraph_tool_topology")
54

55
from .. import _prop, Vector_int32_t, _check_prop_writable, \
56
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView
57
58
from .. flow import libgraph_tool_flow
import random, sys, numpy
59
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
60
           "max_cardinality_matching", "max_independent_vertex_set",
61
           "min_spanning_tree", "dominator_tree", "topological_sort",
62
           "transitive_closure", "label_components", "label_largest_component",
63
           "label_biconnected_components", "shortest_distance",
Tiago Peixoto's avatar
Tiago Peixoto committed
64
           "shortest_path", "pseudo_diameter", "is_planar", "similarity"]
65
66
67
68
69
70
71
72
73
74


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
75
        Second graph to be compared.
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
    0.03333333333333333
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
127

Tiago Peixoto's avatar
Tiago Peixoto committed
128

129
def isomorphism(g1, g2, isomap=False):
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

148
    """
149
150
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
151
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
152
                             _prop("v", g1, imap))
153
154
155
156
157
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
158

159
def subgraph_isomorphism(sub, g, max_n=0, random=False):
160
    r"""
161
162
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
163

164
165
166
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

167
168
169
170
171
172
173
174
175
176
177
178
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
    >>> print len(vm)
Tiago Peixoto's avatar
Tiago Peixoto committed
179
    79
180
181
182
183
184
185
186
187
188
189
190
191
192
    >>> for i in xrange(len(vm)):
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a *= 1.5
    >>> ewidth.a += 0.5
    >>> gt.graph_draw(g, vcolor=vmask, ecolor=emask, penwidth=ewidth,
193
    ...               output="subgraph-iso-embed.pdf")
194
    <...>
195
    >>> gt.graph_draw(sub, output="subgraph-iso.pdf")
196
197
    <...>

198
199
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
200
201
202
203
204
205

    *Left:* Subgraph searched, *Right:* One isomorphic subgraph found in main
     graph.

    Notes
    -----
206
207
208
209
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
210
211
212

    References
    ----------
213
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
214
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
215
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
216
217
218
219

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
220
221
    vlabels=(None, None)
    elabels=(None, None)
222
223
    vmaps = []
    emaps = []
224
225
226
227
    if random:
        seed = numpy.random.randint(0, sys.maxint)
    else:
        seed = 42
228
229
230
231
232
233
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
234
                                vmaps, emaps, max_n, seed)
235
236
237
238
239
    for i in xrange(len(vmaps)):
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
240

241
242
243
244
245
246
247
248
249
250
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
251
    `sub`.
252
    """
253
    if vmask is None:
254
        vmask = g.new_vertex_property("bool")
255
    if emask is None:
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
270

Tiago Peixoto's avatar
Tiago Peixoto committed
271

272
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
273
274
275
276
277
278
279
280
281
282
283
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: None)
284
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        is used. Otherwise, Kruskal's algorithm is used.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
302
    >>> from numpy.random import seed, random
303
    >>> seed(42)
304
305
306
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
307
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
308
    >>> tree = gt.min_spanning_tree(g, weights=weight)
309
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_orig.pdf")
310
311
    <...>
    >>> g.set_edge_filter(tree)
312
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_min_span_tree.pdf")
313
314
315
    <...>


316
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
317
        :width: 400px
318
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
319
        :width: 400px
320
321

    *Left:* Original graph, *Right:* The minimum spanning tree.
322
323
324
325
326

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
327
328
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
329
330
331
332
333
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
334
    if tree_map is None:
335
336
337
338
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
354
    return tree_map
355

Tiago Peixoto's avatar
Tiago Peixoto committed
356

Tiago Peixoto's avatar
Tiago Peixoto committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
389
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
390
391
    >>> dom = gt.dominator_tree(g, root[0])
    >>> print dom.a
Tiago Peixoto's avatar
Tiago Peixoto committed
392
393
394
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
395
396
397

    References
    ----------
398
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
399
400

    """
401
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
402
403
404
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
405
406
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
407
        raise ValueError("dominator tree requires a directed graph.")
408
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
409
410
411
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
412

Tiago Peixoto's avatar
Tiago Peixoto committed
413

414
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
    >>> print sort
Tiago Peixoto's avatar
Tiago Peixoto committed
436
437
    [ 3 20  9 29 15  0 10 23  1  2 21  7  4 12 11  5 26 27  6  8 13 14 22 16 17
     28 18 19 24 25]
Tiago Peixoto's avatar
Tiago Peixoto committed
438
439
440

    References
    ----------
441
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
442
443
444
445
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

446
447
448
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
449
    return numpy.array(topological_order)
450

Tiago Peixoto's avatar
Tiago Peixoto committed
451

452
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
473
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
474
475
476
477
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

478
479
480
481
482
483
484
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
485

486
487
def label_components(g, vprop=None, directed=None):
    """
488
    Label the components to which each vertex in the graph belongs. If the
489
490
    graph is directed, it finds the strongly connected components.

491
492
493
    A property map with the component labels is returned, together with an
    histogram of component labels.

494
495
    Parameters
    ----------
496
    g : :class:`~graph_tool.Graph`
497
        Graph to be used.
498
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
499
500
501
502
503
504
505
506
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
507
    comp : :class:`~graph_tool.PropertyMap`
508
        Vertex property map with component labels.
509
510
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
511
512
513
514
515
516

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

517
    The algorithm runs in :math:`O(V + E)` time.
518
519
520

    Examples
    --------
521
522
523
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
524
    >>> comp, hist = gt.label_components(g)
525
    >>> print comp.a
Tiago Peixoto's avatar
Tiago Peixoto committed
526
527
528
    [0 0 0 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 0 1 2 0 1 0 0 1 0 2 0 2 1 0 2 0 0 0 0
     0 0 1 0 0 2 2 2 0 0 0 0 0 0 2 0 0 1 1 0 0 2 0 1 0 0 0 2 0 0 2 2 1 2 1 0 0
     2 0 0 1 2 1 2 2 0 0 0 0 0 2 0 0 0 1 1 0 0 0 1 1 2 2]
529
    >>> print hist
Tiago Peixoto's avatar
Tiago Peixoto committed
530
    [58 18 24]
531
532
    """

533
    if vprop is None:
534
535
536
537
538
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

539
540
    if directed is not None:
        g = GraphView(g, directed=directed)
541

542
543
544
545
546
547
548
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
549
550
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
565
         Boolean vertex property map which labels the largest component.
566
567
568
569
570
571
572
573
574
575
576
577

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
    >>> print l.a
Tiago Peixoto's avatar
Tiago Peixoto committed
578
579
580
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
581
582
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
    >>> print u.num_vertices()
Tiago Peixoto's avatar
Tiago Peixoto committed
583
    31
584
585
586
587
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
588
589
590
591
592
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
593
    return label
594

Tiago Peixoto's avatar
Tiago Peixoto committed
595

596
def label_biconnected_components(g, eprop=None, vprop=None):
597
598
599
600
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

601
602
603
604
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
649
    >>> seed(43)
650
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
651
    >>> comp, art, hist = gt.label_biconnected_components(g)
652
    >>> print comp.a
Tiago Peixoto's avatar
Tiago Peixoto committed
653
654
655
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
     0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
     0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
656
657
658
659
    >>> print art.a
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
660
    >>> print hist
Tiago Peixoto's avatar
Tiago Peixoto committed
661
    [87 13]
662
    """
663

664
    if vprop is None:
665
        vprop = g.new_vertex_property("bool")
666
    if eprop is None:
667
668
669
670
671
672
673
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

674
675
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
676
677
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
678
    return eprop, vprop, hist
679

Tiago Peixoto's avatar
Tiago Peixoto committed
680

681
def shortest_distance(g, source=None, weights=None, max_dist=None,
682
683
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
684
685
686
687
688
689
690
691
692
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
693
        Source vertex of the search. If unspecified, the all pairs shortest
694
695
696
697
698
699
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
700
        are searched. This parameter has no effect if source is None.
701
702
703
704
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
705
706
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
707
708
709
710
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
711
712
713
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
740
    >>> print dist.a
Tiago Peixoto's avatar
Tiago Peixoto committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
758
    >>> dist = gt.shortest_distance(g)
759
    >>> print dist[g.vertex(0)].a
Tiago Peixoto's avatar
Tiago Peixoto committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
777
778
779
780
781

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
782
783
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
784
785
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
786
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
787
788
789
790
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

791
    if weights is None:
792
793
794
795
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

796
797
    if dist_map is None:
        if source is not None:
798
799
800
801
802
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
803
    if source is not None:
804
805
806
807
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

808
    if max_dist is None:
809
810
        max_dist = 0

811
    if directed is not None:
812
813
814
815
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
816
        if source is not None:
817
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
818
819
820
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
821
                                             _prop("v", g, pmap),
822
823
824
825
826
827
828
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
829
        if directed is not None:
830
            g.pop_filter(directed=True)
831
    if source is not None and pred_map:
832
833
834
835
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
836

837
838
839
840
841
842
843
844
845
846
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
847
    target : :class:`~graph_tool.Vertex`
848
849
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
850
        The edge weights.
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
    >>> print [str(v) for v in vlist]
Tiago Peixoto's avatar
Tiago Peixoto committed
879
    ['10', '222', '246', '0', '50', '257', '12', '242', '11']
880
    >>> print [str(e) for e in elist]
Tiago Peixoto's avatar
Tiago Peixoto committed
881
    ['(10,222)', '(222,246)', '(246,0)', '(0,50)', '(50,257)', '(257,12)', '(12,242)', '(242,11)']
882
883
884
885
886

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
887
888
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
889
890
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
891
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
892
893
    """

894
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
895
896
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
897

Tiago Peixoto's avatar
Tiago Peixoto committed
898
    if pred_map[target] == int(target):  # no path to source
899
900
901
902
903
        return [], []

    vlist = [target]
    elist = []

904
    if weights is not None:
905
906
907
908
909
910
911
912
913
914
915
916
917
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
918
                if weights is not None:
919
920
921
922
923
924
925
926
927
928
929
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

930

Tiago Peixoto's avatar
Tiago Peixoto committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
    >>> print dist
    >>> print end

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
        source = g.vertex(0)
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
    >>> print p
    True
    >>> print list(embed_order[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
1046
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1047
1048
1049
1050
1051
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
    >>> print p
    False
    >>> g.set_edge_filter(kur, True)
1052
    >>> gt.graph_draw(g, output="kuratowski.pdf")
1053
1054
    <...>

1055
    .. figure:: kuratowski.*
1056
1057
1058
1059
1060
1061
1062
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
1063
1064
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
1089
    if embed is not None:
1090
        ret.append(embed)
1091
    if kur is not None:
1092
1093
1094
1095
1096
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176


def max_cardinality_matching(g, heuristic=False, weight=None, minimize=True,
                             match=None):
    r"""Find the maximum cardinality matching in the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    heuristic : bool (optional, default: `False`)
        If true, a random heuristic will be used, which runs in linear time.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the matching will minimize the edge weights (or maximize
        if ``minimize == False``. This option has no effect if
        ``heuristic == False``.
    minimize : bool (optional, default: `True`)
        If `True`, the matching will minimize the weights, otherwise they will
        be maximized. This option has no effect if ``heuristic == False``.
    match : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Edge property map where the matching will be specified.

    Returns
    -------
    match : :class:`~graph_tool.PropertyMap`
        Boolean edge property map where the matching is specified.
    is_maximal : bool
        True if the matching is indeed maximal, or False otherwise. This is only
        returned if ``heuristic == False``.

    Notes
    -----
    A *matching* is a subset of the edges of a graph such that no two edges
    share a common vertex. A *maximum cardinality matching* has maximum size
    over all matchings in the graph.

    For a more detailed description, see [boost-max-matching]_.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (2,2))
    >>> res = gt.max_cardinality_matching(g)
    >>> print res[1]
    True
    >>> gt.graph_draw(g, ecolor=res[0], output="max_card_match.pdf")
    <...>

    .. figure:: max_card_match.*
        :align: center

        Edges belonging to the matching are in red.

    References
    ----------
    .. [boost-max-matching] http://www.boost.org/libs/graph/doc/maximum_matching.html
    .. [matching-heuristic] B. Hendrickson and R. Leland. "A Multilevel Algorithm
       for Partitioning Graphs." In S. Karin, editor, Proc. Supercomputing ’95,
       San Diego. ACM Press, New York, 1995, :doi:`10.1145/224170.224228`

    """
    if match is None:
        match = g.new_edge_property("bool")
    _check_prop_scalar(match, "match")
    _check_prop_writable(match, "match")
    if weight is not None:
        _check_prop_scalar(weight, "weight")

    seed = numpy.random.randint(0, sys.maxint)
    u = GraphView(g, directed=False)
    if not heuristic:
        check = libgraph_tool_flow.\
                max_cardinality_matching(u._Graph__graph, _prop("e", u, match))
        return match, check
    else:
        libgraph_tool_topology.\
                random_matching(u._Graph__graph, _prop("e", u, weight),
                                 _prop("e", u, match), minimize, seed)
        return match