__init__.py 71.4 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2015 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   kcore_decomposition
52
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
53
   is_DAG
54
   is_planar
55
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
56
   edge_reciprocity
57
58
59

Contents
++++++++
60

61
62
"""

63
64
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
65
from .. dl_import import dl_import
66
dl_import("from . import libgraph_tool_topology")
67

68
from .. import _prop, Vector_int32_t, _check_prop_writable, \
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
70
     libcore, _get_rng, _degree, perfect_prop_hash
71
from .. stats import label_self_loops
72
import random, sys, numpy, collections
73

74
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
75
           "max_cardinality_matching", "max_independent_vertex_set",
76
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
77
           "topological_sort", "transitive_closure", "tsp_tour",
78
79
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
Tiago Peixoto's avatar
Tiago Peixoto committed
80
81
82
           "label_out_component", "kcore_decomposition", "shortest_distance",
           "shortest_path", "pseudo_diameter", "is_bipartite", "is_DAG",
           "is_planar", "make_maximal_planar", "similarity", "edge_reciprocity"]
83
84
85
86
87
88
89
90
91
92


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
93
        Second graph to be compared.
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
120
121
122
123
124
125
126
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

127
128
129
130
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
Tiago Peixoto's avatar
Tiago Peixoto committed
131
    >>> gt.random_rewire(u)
132
    24
133
    >>> gt.similarity(u, g)
134
    0.04666666666666667
135
136
137
138
139
140
141
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
142
143
144
145
        try:
            label2 = label2.copy(label1.value_type())
        except ValueError:
            label1 = label1.copy(label2.value_type())
Tiago Peixoto's avatar
Tiago Peixoto committed
146
    if label1.is_writable() or label2.is_writable():
147
148
149
        s = libgraph_tool_topology.\
               similarity(g1._Graph__graph, g2._Graph__graph,
                          _prop("v", g1, label1), _prop("v", g2, label2))
Tiago Peixoto's avatar
Tiago Peixoto committed
150
151
152
153
    else:
        s = libgraph_tool_topology.\
               similarity_fast(g1._Graph__graph, g2._Graph__graph,
                               _prop("v", g1, label1), _prop("v", g2, label2))
154
155
156
157
158
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
159

Tiago Peixoto's avatar
Tiago Peixoto committed
160

161
def isomorphism(g1, g2, vertex_inv1=None, vertex_inv2=None, isomap=False):
162
163
    r"""Check whether two graphs are isomorphic.

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph.
    g2 : :class:`~graph_tool.Graph`
        Second graph.
    vertex_inv1 : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Vertex invariant of the first graph. Only vertices with with the same
        invariants are considered in the isomorphism.
    vertex_inv2 : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Vertex invariant of the second graph. Only vertices with with the same
        invariants are considered in the isomorphism.
    isomap : ``bool`` (optional, default: ``False``)
        If ``True``, a vertex :class:`~graph_tool.PropertyMap` with the
        isomorphism mapping is returned as well.

    Returns
    -------
    is_isomorphism : ``bool``
        ``True`` if both graphs are isomorphic, otherwise ``False``.
    isomap : :class:`~graph_tool.PropertyMap`
         Isomorphism mapping corresponding to a property map belonging to the
         first graph which maps its vertices to their corresponding vertices of
         the second graph.
188
189
190

    Examples
    --------
191
192
193
194
195
196
197
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

198
199
200
201
202
203
204
205
206
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

207
    """
208
    imap = g1.new_vertex_property("int32_t")
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    if vertex_inv1 is None:
        vertex_inv1 = g1.degree_property_map("total").copy("int64_t")
    else:
        vertex_inv1 = vertex_inv1.copy("int64_t")
        d = g1.degree_property_map("total")
        vertex_inv1.fa += (vertex_inv1.fa.max() + 1) * d.a
    if vertex_inv2 is None:
        vertex_inv2 = g2.degree_property_map("total").copy("int64_t")
    else:
        vertex_inv2 = vertex_inv2.copy("int64_t")
        d = g2.degree_property_map("total")
        vertex_inv2.fa += (vertex_inv2.fa.max() + 1) * d.a

    inv_max = max(vertex_inv1.fa.max(),vertex_inv2.fa.max()) + 1

    l1 = label_self_loops(g1, mark_only=True)
    if l1.fa.max() > 0:
        g1 = GraphView(g1, efilt=1 - l1.fa)

    l2 = label_self_loops(g2, mark_only=True)
    if l2.fa.max() > 0:
        g2 = GraphView(g2, efilt=1 - l2.fa)

232
    iso = libgraph_tool_topology.\
233
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
234
235
236
                             _prop("v", g1, vertex_inv1),
                             _prop("v", g2, vertex_inv2),
                             inv_max,
Tiago Peixoto's avatar
Tiago Peixoto committed
237
                             _prop("v", g1, imap))
238
239
240
241
242
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
243

244
def subgraph_isomorphism(sub, g, max_n=0, vertex_label=None, edge_label=None,
245
                         induced=False, subgraph=True, generator=False):
246
    r"""Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n` subgraphs, if `max_n > 0`).
247

248

Tiago Peixoto's avatar
Tiago Peixoto committed
249
250
251
252
253
254
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
255
    max_n : int (optional, default: ``0``)
Tiago Peixoto's avatar
Tiago Peixoto committed
256
257
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
258
    vertex_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
259
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
260
261
262
263
        objects, belonging to ``sub`` and ``g`` (in this order), which specify
        vertex labels which should match, in addition to the topological
        isomorphism.
    edge_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
264
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
265
266
267
268
269
270
271
        objects, belonging to ``sub`` and ``g`` (in this order), which specify
        edge labels which should match, in addition to the topological
        isomorphism.
    induced : bool (optional, default: ``False``)
        If ``True``, only node-induced subgraphs are found.
    subgraph : bool (optional, default: ``True``)
        If ``False``, all non-subgraph isomorphisms between `sub` and `g` are
272
        found.
273
274
275
276
    generator : bool (optional, default: ``False``)
        If ``True``, a generator will be returned, instead of a list. This is
        useful if the number of isomorphisms is too large to store in memory. If
        ``generator == True``, the option ``max_n`` is ignored.
Tiago Peixoto's avatar
Tiago Peixoto committed
277
278
279

    Returns
    -------
280
281
282
283
    vertex_maps : list (or generator) of :class:`~graph_tool.PropertyMap` objects
        List (or generator) containing vertex property map objects which
        indicate different isomorphism mappings. The property maps vertices in
        `sub` to the corresponding vertex index in `g`.
Tiago Peixoto's avatar
Tiago Peixoto committed
284
285
286

    Notes
    -----
287
288
289
290
291
    The implementation is based on the VF2 algorithm, introduced by Cordella et al.
    [cordella-improved-2001]_ [cordella-subgraph-2004]_. The spatial complexity
    is of order :math:`O(V)`, where :math:`V` is the (maximum) number of vertices
    of the two graphs. Time complexity is :math:`O(V^2)` in the best case and
    :math:`O(V!\times V)` in the worst case.
292
293
294

    Examples
    --------
295
    >>> from numpy.random import poisson
296
297
298
    >>> g = gt.complete_graph(30)
    >>> sub = gt.complete_graph(10)
    >>> vm = gt.subgraph_isomorphism(sub, g, max_n=100)
299
    >>> print(len(vm))
300
    100
301
    >>> for i in range(len(vm)):
302
303
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
304
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i])
305
306
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
307
    ...   assert gt.isomorphism(g, sub)
308
309
310
311
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
312
313
314
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
315
    ...               output="subgraph-iso-embed.pdf")
316
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
317
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
318
319
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
320
321
322
323
324
325
326
327
    .. testcode::
       :hide:

       gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
                     edge_pen_width=ewidth, output_size=(200, 200),
                     output="subgraph-iso-embed.png")
       gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
328
329
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
330

331

Tiago Peixoto's avatar
Tiago Peixoto committed
332
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
333
334
335

    References
    ----------
336
337
338
339
340
341
342
343
344
    .. [cordella-improved-2001] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
       "An improved algorithm for matching large graphs.", 3rd IAPR-TC15 Workshop
       on Graph-based Representations in Pattern Recognition, pp. 149-159, Cuen, 2001.
       http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5342
    .. [cordella-subgraph-2004] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
       "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs.",
       IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 10, pp. 1367-1372, 2004. 
       :doi:`10.1109/TPAMI.2004.75`
    .. [boost-subgraph-iso] http://www.boost.org/libs/graph/doc/vf2_sub_graph_iso.html
345
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
346
347

    """
348
349
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
350
351
352
353
    if vertex_label is None:
        vertex_label = (None, None)
    elif vertex_label[0].value_type() != vertex_label[1].value_type():
        raise ValueError("Both vertex label property maps must be of the same type!")
354
355
356
    elif vertex_label[0].value_type() != "int32_t":
        vertex_label = perfect_prop_hash(vertex_label, htype="int32_t")

357
358
359
360
    if edge_label is None:
        edge_label = (None, None)
    elif edge_label[0].value_type() != edge_label[1].value_type():
        raise ValueError("Both edge label property maps must be of the same type!")
361
362
363
    elif edge_label[0].value_type() != "int32_t":
        edge_label = perfect_prop_hash(edge_label, htype="int32_t")

364
365
366
367
368
369
370
371
372
    vmaps = libgraph_tool_topology.\
            subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                 _prop("v", sub, vertex_label[0]),
                                 _prop("v", g, vertex_label[1]),
                                 _prop("e", sub, edge_label[0]),
                                 _prop("e", g, edge_label[1]),
                                 max_n, induced, not subgraph,
                                 generator)
    if generator:
373
        return (PropertyMap(vmap, sub, "v") for vmap in vmaps)
374
    else:
375
        return [PropertyMap(vmap, sub, "v") for vmap in vmaps]
376

Tiago Peixoto's avatar
Tiago Peixoto committed
377

378
def mark_subgraph(g, sub, vmap, vmask=None, emask=None):
379
380
381
382
383
384
385
386
387
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
388
    `sub`.
389
    """
390
    if vmask is None:
391
        vmask = g.new_vertex_property("bool")
392
    if emask is None:
393
394
395
396
397
398
399
400
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
401
402
        us = set([g.vertex(vmap[x]) for x in v.out_neighbours()])

403
        for ew in w.out_edges():
404
405
406
            if ew.target() in us:
                emask[ew] = True

407
    return vmask, emask
408

Tiago Peixoto's avatar
Tiago Peixoto committed
409

410
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
411
412
413
414
415
416
417
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
418
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
419
420
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
421
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
422
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
423
        is used. Otherwise, Kruskal's algorithm is used.
424
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
440
441
442
443
444
445
446
447
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
448
449
450
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
451
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
452
    >>> tree = gt.min_spanning_tree(g, weights=weight)
453
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
454
    <...>
455
456
    >>> u = gt.GraphView(g, efilt=tree)
    >>> gt.graph_draw(u, pos=pos, output="triang_min_span_tree.pdf")
457
458
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
459
460
461
462
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="triang_orig.png")
463
       gt.graph_draw(u, pos=pos, output="triang_min_span_tree.png")
464

465
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
466
        :width: 400px
467
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
468
        :width: 400px
469
470

    *Left:* Original graph, *Right:* The minimum spanning tree.
471
472
473
474
475

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
476
477
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
478
479
480
481
482
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
483
    if tree_map is None:
484
485
486
487
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

488
489
490
491
492
493
494
495
496
497
498
    u = GraphView(g, directed=False)
    if root is None:
        libgraph_tool_topology.\
               get_kruskal_spanning_tree(u._Graph__graph,
                                         _prop("e", g, weights),
                                         _prop("e", g, tree_map))
    else:
        libgraph_tool_topology.\
               get_prim_spanning_tree(u._Graph__graph, int(root),
                                      _prop("e", g, weights),
                                      _prop("e", g, tree_map))
499
    return tree_map
500

Tiago Peixoto's avatar
Tiago Peixoto committed
501

502
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
503
    r"""Return a random spanning tree of a given graph, which can be directed or
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
526
527

    The running time for this algorithm is :math:`O(\tau)`, with :math:`\tau`
528
529
530
531
    being the mean hitting time of a random walk on the graph. In the worse case,
    we have :math:`\tau \sim O(V^3)`, with :math:`V` being the number of
    vertices in the graph. However, in much more typical cases (e.g. sparse
    random graphs) the running time is simply :math:`O(V)`.
532
533
534

    Examples
    --------
535
536
537
538
539
540
541
542
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
543
    >>> g, pos = gt.triangulation(random((400, 2)), type="delaunay")
544
545
546
547
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
548
    >>> tree2 = gt.random_spanning_tree(g, weights=weight)
549
550
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
551
552
553
554
555
    >>> u = gt.GraphView(g, efilt=tree)
    >>> gt.graph_draw(u, pos=pos, output="triang_random_span_tree.pdf")
    <...>
    >>> u2 = gt.GraphView(g, efilt=tree2)
    >>> gt.graph_draw(u2, pos=pos, output="triang_random_span_tree2.pdf")
556
557
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
558
559
560
561
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rtriang_orig.png")
562
563
       gt.graph_draw(u, pos=pos, output="triang_random_span_tree.png")
       gt.graph_draw(u2, pos=pos, output="triang_random_span_tree2.png")
564
565

    .. image:: rtriang_orig.*
566
        :width: 300px
567
    .. image:: triang_random_span_tree.*
568
569
570
        :width: 300px
    .. image:: triang_random_span_tree2.*
        :width: 300px
571

572
573
    *Left:* Original graph, *Middle:* A random spanning tree, *Right:* Another
    random spanning tree
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
595
596
597
    u = GraphView(g, vfilt=l)
    if u.num_vertices() != g.num_vertices():
        raise ValueError("There must be a path from all vertices to the root vertex: %d" % int(root) )
598
599
600
601

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
602
                             _prop("e", g, tree_map), _get_rng())
603
604
605
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
633
634
635
636
637
638
639
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
640
641
642
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
643
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
644
    >>> dom = gt.dominator_tree(g, root[0])
645
    >>> print(dom.a)
646
647
648
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
649
650
651

    References
    ----------
652
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
653
654

    """
655
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
656
657
658
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
659
660
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
661
        raise ValueError("dominator tree requires a directed graph.")
662
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
663
664
665
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
666

Tiago Peixoto's avatar
Tiago Peixoto committed
667

668
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
669
670
671
672
673
674
675
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
676
    such that if edge (u,v) appears in the graph, then u comes before v in the
Tiago Peixoto's avatar
Tiago Peixoto committed
677
678
679
680
681
682
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
683
684
685
686
687
688
689
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
690
691
692
693
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
694
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
695
696
    [29 28 27 26 23 24 22 21 20 18 17 16 15 14 11 10  9  6  5  4 19 12 13  3  2
     25  1  0  7  8]
Tiago Peixoto's avatar
Tiago Peixoto committed
697
698
699

    References
    ----------
700
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
701
702
703
704
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

705
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
706
707
708
709
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
710
    return topological_order.a[::-1].copy()
711

Tiago Peixoto's avatar
Tiago Peixoto committed
712

713
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
714
715
716
717
718
719
720
721
722
723
724
725
726
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
727
728
729
730
731
732
733
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
734
735
736
737
738
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
739
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
740
741
742
743
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

744
745
746
747
748
749
750
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
751

752
def label_components(g, vprop=None, directed=None, attractors=False):
753
    """
754
    Label the components to which each vertex in the graph belongs. If the
755
756
    graph is directed, it finds the strongly connected components.

757
758
759
    A property map with the component labels is returned, together with an
    histogram of component labels.

760
761
    Parameters
    ----------
762
    g : :class:`~graph_tool.Graph`
763
        Graph to be used.
764
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
765
766
        Vertex property to store the component labels. If none is supplied, one
        is created.
767
    directed : bool (optional, default: ``None``)
768
769
        Treat graph as directed or not, independently of its actual
        directionality.
770
771
772
773
    attractors : bool (optional, default: ``False``)
        If ``True``, and the graph is directed, an additional array with Boolean
        values is returned, specifying if the strongly connected components are
        attractors or not.
774
775
776

    Returns
    -------
777
    comp : :class:`~graph_tool.PropertyMap`
778
        Vertex property map with component labels.
779
780
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
781
782
783
784
    is_attractor : :class:`~numpy.ndarray`
        A Boolean array specifying if the strongly connected components are
        attractors or not. This returned only if ``attractors == True``, and the
        graph is directed.
785
786
787
788
789
790

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

791
    The algorithm runs in :math:`O(V + E)` time.
792
793
794

    Examples
    --------
795
796
797
798
799
800
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

801
802
    >>> g = gt.random_graph(100, lambda: (poisson(2), poisson(2)))
    >>> comp, hist, is_attractor = gt.label_components(g, attractors=True)
803
    >>> print(comp.a)
804
805
806
807
    [13 13 13 13 14 12 13 15 16 13 17 19 13 13 13 20 13 13 13 10 13 13 22 13 13
      4 13 13  2 23 13 13 24 13 13 26 27 13 13 13 13  0 13 13  3 13 13 13 28  1
      6 13 13 13 13  5 13 13 13 13 13 13 13  9 13 11 13 29 13 13 13 13 18 13 30
     31 13 13 32 13 33 34 35 13 13 21 13 25  8 36 13 13 13 13 13 37 13 13  7 13]
808
    >>> print(hist)
809
810
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1 63  1  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1]
811
    >>> print(is_attractor)
812
813
814
815
    [ True False  True  True  True False False  True False  True  True  True
      True False  True False False False False False False False False False
     False False False False False False False False False  True False  True
     False False]
816
817
    """

818
    if vprop is None:
819
820
821
822
823
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

824
825
    if directed is not None:
        g = GraphView(g, directed=directed)
826

827
828
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
829
830
831
832
833
834
835
836
837

    if attractors and g.is_directed() and directed != False:
        is_attractor = numpy.ones(len(hist), dtype="bool")
        libgraph_tool_topology.\
               label_attractors(g._Graph__graph, _prop("v", g, vprop),
                                is_attractor)
        return vprop, hist, is_attractor
    else:
        return vprop, hist
838
839
840
841


def label_largest_component(g, directed=None):
    """
842
843
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
844
845
846
847
848
849
850
851
852
853
854
855
856
857

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
858
         Boolean vertex property map which labels the largest component.
859
860
861
862
863
864
865

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
866
867
868
869
870
871
872
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

873
874
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
875
    >>> print(l.a)
876
877
878
    [0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
     1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
     0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0]
879
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
880
    >>> print(u.num_vertices())
881
    18
882
883
884
885
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
886
    vfilt, inv = g.get_vertex_filter()
887
    label.fa = c.fa == h.argmax()
888
    return label
889

Tiago Peixoto's avatar
Tiago Peixoto committed
890

891
def label_out_component(g, root, label=None):
892
893
894
895
896
897
898
899
900
901
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
902
903
904
    label : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If provided, this must be an initialized Boolean vertex property map
        where the out-component will be labeled.
905
906
907

    Returns
    -------
908
    label : :class:`~graph_tool.PropertyMap`
909
910
911
912
913
914
915
916
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
917
918
919
920
921
922
923
924
925
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
926
    >>> print(l.a)
927
928
929
    [1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0]
930
931
932

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
933
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
934
    ...                            g.vertex(1))
935
    >>> print(l.a)
936
937
938
    [0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1
     1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0
     1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0]
939
940
    """

941
942
943
944
945
    if label is None:
        label = g.new_vertex_property("bool")
    elif label.value_type() != "bool":
        raise ValueError("value type of `label` must be `bool`, not %s" %
                         label.value_type())
946
947
948
949
950
951
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


952
def label_biconnected_components(g, eprop=None, vprop=None):
953
954
955
956
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

957
958
959
960
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
1004
1005
1006
1007
1008
1009
1010
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
1011
    >>> g = gt.random_graph(100, lambda: poisson(2), directed=False)
1012
    >>> comp, art, hist = gt.label_biconnected_components(g)
1013
    >>> print(comp.a)
1014
1015
1016
1017
1018
    [31 42 41 41 41 21  2 41 41 19 41 33 41 41 12 41 40 41 41 41 41 41 41  8 41
     10 41 32 28 30 41 41 41  5 41 41 41 41 39 38 41 41 41 41 45 44 41 41 22 41
     41 41  0 41 41 41 41 41 41 41 41  7 13 41 20 41 41 41 41 34  9 41 41  4 43
     18 41 41 15 29  1 41 41 41 41  6 41 25 23 35 16 24 37 11  3 36 17 26 27 14
     41]
1019
    >>> print(art.a)
1020
1021
1022
    [1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
     1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1
     1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0]
1023
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
1024
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
1025
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 56  1  1  1  1]
1026
    """
1027

1028
    if vprop is None:
1029
        vprop = g.new_vertex_property("bool")
1030
    if eprop is None:
1031
1032
1033
1034
1035
1036
1037
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

1038
1039
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
1040
1041
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
1042
    return eprop, vprop, hist
1043

Tiago Peixoto's avatar
Tiago Peixoto committed
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
def kcore_decomposition(g, deg="out", vprop=None):
    """
    Perform a k-core decomposition of the given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    deg : string
        Degree to be used for the decomposition. It can be either "in", "out" or
        "total", for in-, out-, or total degree of the vertices.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex property to store the decomposition. If ``None`` is supplied,
        one is created.

    Returns
    -------
    kval : :class:`~graph_tool.PropertyMap`
        Vertex property map with the k-core decomposition, i.e. a given vertex v
        belongs to the ``kval[v]``-core.

    Notes
    -----

    The k-core is a maximal set of vertices such that its induced subgraph only
    contains vertices with degree larger than or equal to k.

    This algorithm is described in [batagelk-algorithm]_ and runs in :math:`O(V + E)`
    time.

    Examples
    --------

    >>> g = gt.collection.data["netscience"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> kcore = gt.kcore_decomposition(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.png")

    .. figure:: netsci-kcore.*
        :align: center

        K-core decomposition of a network of network scientists.

    References
    ----------
    .. [k-core] http://en.wikipedia.org/wiki/Degeneracy_%28graph_theory%29
1096
1097
1098
1099
1100
    .. [batagelk-algorithm]  Vladimir Batagelj, Matjaž Zaveršnik, "Fast
       algorithms for determining (generalized) core groups in social
       networks", Advances in Data Analysis and Classification
       Volume 5, Issue 2, pp 129-145 (2011), :DOI:`10.1007/s11634-010-0079-y`,
       :arxiv:`cs/0310049`
Tiago Peixoto's avatar
Tiago Peixoto committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

    """

    if vprop is None:
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    if deg not in ["in", "out", "total"]:
        raise ValueError("invalid degree: " + str(deg))

    if g.is_directed():
        if deg == "out":
            g = GraphView(g, reversed=True)
        if deg == "total":
            g = GraphView(g, directed=False)

    libgraph_tool_topology.\
               kcore_decomposition(g._Graph__graph, _prop("v", g, vprop),
                                   _degree(g, deg))
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1123

1124
1125
1126
def shortest_distance(g, source=None, target=None, weights=None,
                      negative_weights=False, max_dist=None, directed=None,
                      dense=False, dist_map=None, pred_map=False):
1127
    """Calculate the distance from a source to a target vertex, or to of all
1128
1129
    vertices from a given source, or the all pairs shortest paths, if the source
    is not specified.
1130
1131
1132
1133
1134

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
1135
    source : :class:`~graph_tool.Vertex` (optional, default: ``None``)
1136
        Source vertex of the search. If unspecified, the all pairs shortest
1137
        distances are computed.
1138
    target : :class:`~graph_tool.Vertex` or iterable of such objects (optional, default: ``None``)
1139
1140
        Target vertex (or vertices) of the search. If unspecified, the distance
        to all vertices from the source will be computed.
1141
1142
1143
1144
1145
1146
1147
    weights : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        The edge weights. If provided, the shortest path will correspond to the
        minimal sum of weights.
    negative_weights : ``bool`` (optional, default: ``False``)
        If `True`, this will trigger the use of Bellman-Ford algorithm.
        Ignored if ``source`` is ``None``.
    max_dist : scalar value (optional, default: ``None``)
1148
        If specified, this limits the maximum distance of the vertices
1149
1150
1151
        searched. This parameter has no effect if source is ``None``, or if
        `negative_weights=True`.
    directed : ``bool`` (optional, default:``None``)
1152
1153
        Treat graph as directed or not, independently of its actual
        directionality.
1154
1155
1156
    dense : ``bool`` (optional, default: ``False``)
        If ``True``, and source is ``None``, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not ``None``, this option
1157
        has no effect.
1158
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
1159
1160
        Vertex property to store the distances. If none is supplied, one
        is created.
1161
1162
1163
    pred_map : ``bool`` (optional, default: ``False``)
        If ``True``, a vertex property map with the predecessors is returned.
        Ignored if ``source`` is ``None``.
1164
1165
1166
1167

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
1168
        Vertex property map with the distances from source. If source is ``None``,
1169
        it will have a vector value type, with the distances to every vertex.
1170
1171
    pred_map : :class:`~graph_tool.PropertyMap` (optional, if ``pred_map == True``)
        Vertex property map with the predecessors in the search tree.
1172
1173
1174
1175
1176
1177

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
1178
1179
1180
1181
1182
    ``negative_weights == True``, the Bellman-Ford algorithm is used
    [bellman_ford]_, which accepts negative weights, as long as there are no
    negative loops. If source is not given, the distances are calculated with
    Johnson's algorithm [johnson-apsp]_. If dense=True, the Floyd-Warshall
    algorithm [floyd-warshall-apsp]_ is used instead.
1183
1184

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
1185
1186
1187
    :math:`O(V \log V)` if weights are given. If ``negative_weights == True``,
    the complexity is :math:`O(VE)`. If source is not specified, it runs in
    :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.
1188
1189
1190

    Examples
    --------
1191
1192
1193
1194
1195
1196
1197
1198
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
1199
1200
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
1201
    >>> print(dist.a)
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    [         0          1          5          4 2147483647          4
              9          5          8          5          7          6
              3          5          6          8          3          3
              5          6 2147483647          1          4          5
              5          2          5          7          4          5
              5          5          4          4          5          2
              5 2147483647          5          2 2147483647          6
              5          6          6          2          5          4
              3          6          5          4          4          5
              3          3          5          5          1          5
              4          6          3          4          3          3
              7          5          5          4 2147483647 2147483647
              2          5          3          5          5          6
              3          5          6          6          5          4
              5          3          6          3          4 2147483647
              4          6          4          4          4          4
              6          5          4          4]
    >>>
1220
    >>> dist = gt.shortest_distance(g)
1221
    >>> print(dist[g.vertex(0)].a)
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    [         0          1          5          4 2147483647          4
              9          5          8          5          7          6
              3          5          6          8          3          3
              5          6 2147483647          1          4          5
              5          2          5          7          4          5
              5          5          4          4          5          2
              5 2147483647          5          2 2147483647          6
              5          6          6          2          5          4
              3          6          5          4          4          5
              3          3          5          5          1          5
              4          6          3          4          3          3
              7          5          5          4 2147483647 2147483647
              2          5          3          5          5          6
              3          5          6          6          5          4
              5          3          6          3          4 2147483647
              4          6          4          4          4          4
              6          5          4          4]
1239
    >>> dist = gt.shortest_distance(g, source=g.vertex(0), target=g.vertex(2))
1240
    >>> print(dist)
1241
1242
    5
    >>> dist = gt.shortest_distance(g, source=g.vertex(0), target=[g.vertex(2), g.vertex(6)])
1243
    >>> print(dist)
1244
    [5 9]
1245
1246
1247
1248

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
1249
       Symposium on the Theory of Switching (1959), Harvard University Press.
Tiago Peixoto's avatar
Tiago Peixoto committed
1250
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1251
1252
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1253
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1254
1255
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
1256
    .. [bellman-ford] http://www.boost.org/libs/graph/doc/bellman_ford_shortest.html
1257
1258
    """

1259
1260
1261
1262
1263
1264
    if isinstance(target, collections.Iterable):
        target = numpy.asarray(target, dtype="int64")
    elif target is None:
        target = numpy.array([], dtype="int64")
    else:
        target = numpy.asarray([int(target)], dtype="int64")
1265

1266
    if weights is None:
1267
1268
1269
1270
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1271
1272
    if dist_map is None:
        if source is not None:
1273
1274
1275
1276
1277
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1278
    if source is not None:
1279
1280
1281
1282
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1283
    if max_dist is None:
1284
1285
        max_dist = 0

1286
    if directed is not None:
1287
1288
1289
        u = GraphView(g, directed=directed)
    else:
        u = g
1290

1291
1292
1293
1294
    if source is not None:
        pmap = g.copy_property(u.vertex_index, value_type="int64_t")
        libgraph_tool_topology.get_dists(g._Graph__graph,
                                         int(source),
1295
                                         target,
1296
1297
1298
                                         _prop("v", g, dist_map),
                                         _prop("e", g, weights),
                                         _prop("v", g, pmap),
1299
1300
                                         float(max_dist),
                                         negative_weights)
1301
1302
    else:
        libgraph_tool_topology.get_all_dists(u