cairo_draw.py 98.8 KB
Newer Older
1001
1002
    ...               edge_color=ebet, eorder=eorder, edge_pen_width=ebet,
    ...               edge_control_points=control, # some curvy edges
1003
1004
1005
    ...               output="graph-draw.pdf")
    <...>

1006
1007
1008
1009
1010
1011
1012
1013
1014
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, vertex_size=deg, vertex_fill_color=deg, vorder=deg,
                     edge_color=ebet, eorder=eorder, edge_pen_width=ebet,
                     edge_control_points=control,
                     output="graph-draw.png")


1015
1016
1017
    .. figure:: graph-draw.*
        :align: center

1018
1019
        SFDP force-directed layout of a Price network with 1500 nodes. The
        vertex size and color indicate the degree, and the edge color and width
1020
        the edge betweenness centrality.
1021
1022
1023

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
1024
1025
1026
1027
    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
1028
    props = _convert_props(props, "v", g, kwargs.get("vcmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1029
1030
    vprops.update(props)
    props, kwargs = parse_props("edge", kwargs)
1031
    props = _convert_props(props, "e", g, kwargs.get("ecmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1032
1033
1034
    eprops.update(props)

    if pos is None:
1035
        if (g.num_vertices() > 2 and output is None and
1036
1037
            not inline and kwargs.get("update_layout", True) and
            mplfig is None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
            L = np.sqrt(g.num_vertices())
            pos = random_layout(g, [L, L])
            if g.num_vertices() > 1000:
                if "multilevel" not in kwargs:
                    kwargs["multilevel"] = True
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos) / 10
        else:
            pos = sfdp_layout(g)
1047
1048
    else:
        _check_prop_vector(pos, name="pos", floating=True)
1049
        if output is None and not inline:
1050
1051
1052
1053
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos)
            if "update_layout" not in kwargs:
                kwargs["update_layout"] = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1054

1055
1056
1057
    if "pen_width" in eprops and "marker_size" not in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1058
            pw = pw.copy("double")
1059
            pw.fa *= 2.75
1060
1061
1062
            eprops["marker_size"] = pw
        else:
            eprops["marker_size"] = pw * 2.75
1063

1064
1065
1066
    if "text" in eprops and "text_distance" not in eprops and "pen_width" in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1067
            pw = pw.copy("double")
1068
            pw.fa *= 2
1069
1070
1071
1072
            eprops["text_distance"] = pw
        else:
            eprops["text_distance"] = pw * 2

1073
    if "text" in vprops and ("text_color" not in vprops or vprops["text_color"] == "auto"):
1074
        vcmap = kwargs.get("vcmap", default_cm)
1075
1076
1077
1078
        bg = _convert(vertex_attrs.fill_color,
                      vprops.get("fill_color", _vdefaults["fill_color"]),
                      vcmap)
        bg_color = kwargs.get("bg_color", [1., 1., 1., 1.])
1079
1080
1081
1082
1083
        vprops["text_color"] = auto_colors(g, bg,
                                           vprops.get("text_position",
                                                      _vdefaults["text_position"]),
                                           bg_color)

1084
    if mplfig is not None:
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        ax = None
        if isinstance(mplfig, matplotlib.figure.Figure):
            ctr = ax = mplfig.gca()
        elif isinstance(mplfig, matplotlib.axes.Axes):
            ctr = ax = mplfig
        else:
            ctr = mplfig

        artist = GraphArtist(g, pos, vprops, eprops, vorder, eorder, nodesfirst,
                             ax, **kwargs)
        ctr.artists.append(artist)

1097
1098
1099
1100
1101
1102
1103
1104
1105
        if fit_view != False and ax is not None:
            try:
                x, y, w, h = fit_view
            except TypeError:
                x, y = ungroup_vector_property(pos, [0, 1])
                l, r = x.a.min(), x.a.max()
                b, t = y.a.min(), y.a.max()
                w = r - l
                h = t - b
1106
1107
1108
            if fit_view != True:
                w *= float(fit_view)
                h *= float(fit_view)
1109
1110
1111
1112
            ax.set_xlim(l - w * .1, r + w * .1)
            ax.set_ylim(b - h * .1, t + h * .1)

        return pos
1113

1114
1115
    output_file = output
    if inline and output is None:
1116
        if fmt == "auto":
1117
1118
1119
1120
            if output is None:
                fmt = "png"
            else:
                fmt = get_file_fmt(output)
1121
1122
        output = io.BytesIO()

1123
    if output is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
1124
        return interactive_window(g, pos, vprops, eprops, vorder, eorder,
1125
                                  nodesfirst, geometry=output_size,
1126
                                  fit_view=fit_view, **kwargs)
Tiago Peixoto's avatar
Tiago Peixoto committed
1127
    else:
1128
        if isinstance(output, (str, unicode)):
1129
1130
1131
1132
1133
            out, auto_fmt = open_file(output, mode="wb")
        else:
            out = output
            if fmt == "auto":
                raise ValueError("File format must be specified.")
Tiago Peixoto's avatar
Tiago Peixoto committed
1134
1135

        if fmt == "auto":
1136
            fmt = auto_fmt
Tiago Peixoto's avatar
Tiago Peixoto committed
1137
1138
1139
1140
        if fmt == "pdf":
            srf = cairo.PDFSurface(out, output_size[0], output_size[1])
        elif fmt == "ps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
Tiago Peixoto's avatar
Tiago Peixoto committed
1141
1142
1143
        elif fmt == "eps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
            srf.set_eps(True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
        elif fmt == "svg":
            srf = cairo.SVGSurface(out, output_size[0], output_size[1])
        elif fmt == "png":
            srf = cairo.ImageSurface(cairo.FORMAT_ARGB32, output_size[0],
                                     output_size[1])
        else:
            raise ValueError("Invalid format type: " + fmt)

        cr = cairo.Context(srf)

        adjust_default_sizes(g, output_size, vprops, eprops)
1155
1156
1157
        if fit_view != False:
            try:
                x, y, w, h = fit_view
1158
1159
                zoom = min(output_size[0] / w, output_size[1] / h)
                offset = (x * zoom, y * zoom)
1160
            except TypeError:
1161
                pad = fit_view if fit_view != True else 0.95
1162
1163
1164
1165
1166
1167
1168
                offset, zoom = fit_to_view(g, pos, output_size, vprops["size"],
                                           vprops["pen_width"], None,
                                           vprops.get("text", None),
                                           vprops.get("font_family",
                                                      _vdefaults["font_family"]),
                                           vprops.get("font_size",
                                                      _vdefaults["font_size"]),
1169
                                           pad, cr)
1170
            fit_view = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1171
1172
1173
1174
1175
1176
1177
1178
1179
        else:
            offset, zoom = [0, 0], 1

        if "bg_color" in kwargs:
            bg_color = kwargs["bg_color"]
            del  kwargs["bg_color"]
            cr.set_source_rgba(bg_color[0], bg_color[1],
                               bg_color[2], bg_color[3])
            cr.paint()
1180

Tiago Peixoto's avatar
Tiago Peixoto committed
1181
1182
1183
1184
        cr.translate(offset[0], offset[1])
        cr.scale(zoom, zoom)

        cairo_draw(g, pos, cr, vprops, eprops, vorder, eorder,
1185
                   nodesfirst, fit_view=fit_view, **kwargs)
1186

1187
        srf.flush()
1188
        if fmt == "png":
Tiago Peixoto's avatar
Tiago Peixoto committed
1189
            srf.write_to_png(out)
1190
1191
        elif fmt == "svg":
            srf.finish()
1192
1193
1194

        del cr

1195
        if inline and output_file is None:
1196
1197
1198
            img = None
            if fmt == "png":
                img = IPython.display.Image(data=out.getvalue())
1199
            elif fmt == "svg":
1200
                img = IPython.display.SVG(data=out.getvalue())
1201
            elif img is None:
1202
1203
                inl_out = io.BytesIO()
                inl_srf = cairo.ImageSurface(cairo.FORMAT_ARGB32,
Pietro Battiston's avatar
Pietro Battiston committed
1204
1205
                                             output_size[0],
                                             output_size[1])
1206
1207
1208
1209
1210
1211
                inl_cr = cairo.Context(inl_srf)
                inl_cr.set_source_surface(srf, 0, 0)
                inl_cr.paint()
                inl_srf.write_to_png(inl_out)
                del inl_srf
                img = IPython.display.Image(data=inl_out.getvalue())
1212
            srf.finish()
1213
            IPython.display.display(img)
1214
        del srf
Tiago Peixoto's avatar
Tiago Peixoto committed
1215
        return pos
1216
1217
1218
1219
1220


def adjust_default_sizes(g, geometry, vprops, eprops, force=False):
    if "size" not in vprops or force:
        A = geometry[0] * geometry[1]
Tiago Peixoto's avatar
Tiago Peixoto committed
1221
1222
        N = max(g.num_vertices(), 1)
        vprops["size"] = np.sqrt(A / N) / 3.5
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

    if "pen_width" not in vprops or force:
        size = vprops["size"]
        if isinstance(vprops["size"], PropertyMap):
            size = vprops["size"].fa.mean()
        vprops["pen_width"] = size / 10
        if "pen_width" not in eprops or force:
            eprops["pen_width"] = size / 10
        if "marker_size" not in eprops or force:
            eprops["marker_size"] = size * 0.8


def scale_ink(scale, vprops, eprops):
    if "size" not in vprops:
        vprops["size"] = _vdefaults["size"]
    if "pen_width" not in vprops:
        vprops["pen_width"] = _vdefaults["pen_width"]
    if "font_size" not in vprops:
        vprops["font_size"] = _vdefaults["font_size"]
    if "pen_width" not in eprops:
        eprops["pen_width"] = _edefaults["pen_width"]
    if "marker_size" not in eprops:
        eprops["marker_size"] = _edefaults["marker_size"]
1246
1247
1248
1249
    if "font_size" not in eprops:
        eprops["font_size"] = _edefaults["font_size"]
    if "text_distance" not in eprops:
        eprops["text_distance"] = _edefaults["text_distance"]
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

    for props in [vprops, eprops]:
        if isinstance(props["pen_width"], PropertyMap):
            props["pen_width"].fa *= scale
        else:
            props["pen_width"] *= scale
    if isinstance(vprops["size"], PropertyMap):
        vprops["size"].fa *= scale
    else:
        vprops["size"] *= scale
    if isinstance(vprops["font_size"], PropertyMap):
        vprops["font_size"].fa *= scale
    else:
        vprops["font_size"] *= scale
    if isinstance(eprops["marker_size"], PropertyMap):
        eprops["marker_size"].fa *= scale
    else:
        eprops["marker_size"] *= scale
1268
1269
1270
1271
1272
1273
1274
1275
    if isinstance(eprops["font_size"], PropertyMap):
        eprops["font_size"].fa *= scale
    else:
        eprops["font_size"] *= scale
    if isinstance(eprops["text_distance"], PropertyMap):
        eprops["text_distance"].fa *= scale
    else:
        eprops["text_distance"] *= scale
1276
1277
1278

def get_bb(g, pos, size, pen_width, size_scale=1, text=None, font_family=None,
           font_size=None, cr=None):
1279
    size = size.fa if isinstance(size, PropertyMap) else size
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    pen_width = pen_width.fa if isinstance(pen_width, PropertyMap) else pen_width
    pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
    if text is not None and text != "":
        if not isinstance(size, PropertyMap):
            uniform = (not isinstance(font_size, PropertyMap) and
                       not isinstance(font_family, PropertyMap))
            size = np.ones(len(pos_x.fa)) * size
        else:
            uniform = False
        for i, v in enumerate(g.vertices()):
            ff = font_family[v] if isinstance(font_family, PropertyMap) \
               else font_family
            cr.select_font_face(ff)
1293
            fs = font_size[v] if isinstance(font_size, PropertyMap) \
1294
               else font_size
1295
1296
            if not isinstance(font_size, PropertyMap):
                cr.set_font_size(fs)
1297
            t = text[v] if isinstance(text, PropertyMap) else text
1298
            if not isinstance(t, (str, unicode)):
1299
1300
1301
1302
1303
1304
1305
                t = str(t)
            extents = cr.text_extents(t)
            s = max(extents[2], extents[3]) * 1.4
            size[i] = max(size[i] * size_scale, s) / size_scale
            if uniform:
                size[:] = size[i]
                break
1306
    sl = label_self_loops(g)
1307
    slm = sl.fa.max() * 0.75 if g.num_edges() > 0 else 0
1308
    delta = (size * size_scale * (slm + 1)) / 2 + pen_width * 2
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
    x_range = [pos_x.fa.min(), pos_x.fa.max()]
    y_range = [pos_y.fa.min(), pos_y.fa.max()]
    x_delta = [x_range[0] - (pos_x.fa - delta).min(),
               (pos_x.fa + delta).max() - x_range[1]]
    y_delta = [y_range[0] - (pos_y.fa - delta).min(),
               (pos_y.fa + delta).max() - y_range[1]]
    return x_range, y_range, x_delta, y_delta


def fit_to_view(g, pos, geometry, size, pen_width, M=None, text=None,
1319
                font_family=None, font_size=None, pad=0.95, cr=None):
1320
1321
    if g.num_vertices() == 0:
        return [0, 0], 1
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    if M is not None:
        pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
        P = np.zeros((2, len(pos_x.fa)))
        P[0, :] = pos_x.fa
        P[1, :] = pos_y.fa
        T = np.zeros((2, 2))
        O = np.zeros(2)
        T[0, 0], T[1, 0], T[0, 1], T[1, 1], O[0], O[1] = M
        P = np.dot(T, P)
        P[0] += O[0]
        P[1] += O[1]
        pos_x.fa = P[0, :]
        pos_y.fa = P[1, :]
        pos = group_vector_property([pos_x, pos_y])
    x_range, y_range, x_delta, y_delta = get_bb(g, pos, size, pen_width,
                                                1, text, font_family,
                                                font_size, cr)
1339
1340
1341
1342
1343
1344
1345
1346
    dx = (x_range[1] - x_range[0])
    dy = (y_range[1] - y_range[0])
    if dx == 0:
        dx = 1
    if dy == 0:
        dy = 1
    zoom_x = (geometry[0] - sum(x_delta)) / dx
    zoom_y = (geometry[1] - sum(y_delta)) / dy
1347
1348
1349
1350
1351
    if np.isnan(zoom_x) or np.isinf(zoom_x) or zoom_x == 0:
        zoom_x = 1
    if np.isnan(zoom_y) or np.isinf(zoom_y) or zoom_y == 0:
        zoom_y = 1
    zoom = min(zoom_x, zoom_y) * pad
1352
1353
    empty_x = (geometry[0] - sum(x_delta)) - dx * zoom
    empty_y = (geometry[1] - sum(y_delta)) - dy * zoom
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
    offset = [-x_range[0] * zoom + empty_x / 2 + x_delta[0],
              -y_range[0] * zoom + empty_y / 2 + y_delta[0]]
    return offset, zoom


def transform_scale(M, scale):
    p = M.transform_distance(scale / np.sqrt(2),
                             scale / np.sqrt(2))
    return np.sqrt(p[0] ** 2 + p[1] ** 2)

1364
1365
def get_hierarchy_control_points(g, t, tpos, beta=0.8, cts=None, is_tree=True,
                                 max_depth=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1366
    r"""Return the Bézier spline control points for the edges in ``g``, given the hierarchical structure encoded in graph `t`.
1367
1368
1369
1370
1371
1372
1373
1374
1375

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be drawn.
    t : :class:`~graph_tool.Graph`
        Directed graph containing the hierarchy of ``g``. It must be a directed
        tree with a single root. The direction of the edges point from the root
        to the leaves, and the vertices in ``t`` with index in the range
Tiago Peixoto's avatar
Tiago Peixoto committed
1376
        :math:`[0, N-1]`, with :math:`N` being the number of vertices in ``g``,
1377
        must correspond to the respective vertex in ``g``.
1378
    tpos : :class:`~graph_tool.VertexPropertyMap`
1379
1380
        Vector-valued vertex property map containing the x and y coordinates of
        the vertices in graph ``t``.
1381
    beta : ``float`` (optional, default: ``0.8`` or :class:`~graph_tool.EdgePropertyMap`)
1382
        Edge bundling strength. For ``beta == 0`` the edges are straight lines,
1383
1384
1385
        and for ``beta == 1`` they strictly follow the hierarchy. This can be
        optionally an edge property map, which specified a different bundling
        strength for each edge.
1386
    cts : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
1387
1388
        Edge property map of type ``vector<double>`` where the control points
        will be stored.
1389
1390
1391
    is_tree : ``bool`` (optional, default: ``True``)
        If ``True``, ``t`` must be a directed tree, otherwise it can be any
        connected graph.
1392
1393
1394
    max_depth : ``int`` (optional, default: ``None``)
        If supplied, only the first ``max_depth`` bottom levels of the hierarchy
        will be used.
1395

1396
1397
1398
1399

    Returns
    -------

1400
    cts : :class:`~graph_tool.EdgePropertyMap`
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
        Vector-valued edge property map containing the Bézier spline control
        points for the edges in ``g``.

    Notes
    -----
    This is an implementation of the edge-bundling algorithm described in
    [holten-hierarchical-2006]_.


    Examples
    --------
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    .. testsetup:: nested_cts

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: nested_cts

       >>> g = gt.collection.data["netscience"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g.purge_vertices()
1422
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
1423
       >>> t = gt.get_hierarchy_tree(state)[0]
1424
1425
1426
       >>> tpos = pos = gt.radial_tree_layout(t, t.vertex(t.num_vertices() - 1), weighted=True)
       >>> cts = gt.get_hierarchy_control_points(g, t, tpos)
       >>> pos = g.own_property(tpos)
1427
       >>> b = state.levels[0].b
Tiago Peixoto's avatar
Tiago Peixoto committed
1428
1429
1430
       >>> shape = b.copy()
       >>> shape.a %= 14
       >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts,
1431
1432
1433
1434
1435
       ...               edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.pdf")
       <...>

    .. testcleanup:: nested_cts

Tiago Peixoto's avatar
Tiago Peixoto committed
1436
       gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts, edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.png")
1437
1438
1439
1440
1441
1442
1443

    .. figure:: netscience_nested_mdl.*
       :align: center

       Block partition of a co-authorship network, which minimizes the description
       length of the network according to the nested (degree-corrected) stochastic blockmodel.

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454


    References
    ----------

    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

1455
1456
1457
1458
    if cts is None:
        cts = g.new_edge_property("vector<double>")
    if cts.value_type() != "vector<double>":
        raise ValueError("cts property map must be of type 'vector<double>' not '%s' " % cts.value_type())
1459
1460
1461
1462

    u = GraphView(g, directed=True)
    tu = GraphView(t, directed=True)

1463
1464
1465
1466
1467
    if not isinstance(beta, PropertyMap):
        beta = u.new_edge_property("double", beta)
    else:
        beta = beta.copy("double")

1468
1469
1470
    if max_depth is None:
        max_depth = t.num_vertices()

1471
    tu = GraphView(tu, skip_vfilt=True)
1472
    tpos = tu.own_property(tpos)
1473
1474
    libgraph_tool_draw.get_cts(u._Graph__graph,
                               tu._Graph__graph,
1475
1476
                               _prop("v", tu, tpos),
                               _prop("e", u, beta),
1477
                               _prop("e", u, cts),
1478
                               is_tree, max_depth)
1479
    return cts
1480
1481
1482
1483
1484
1485
1486

#
# The functions and classes below depend on GTK
# =============================================
#

try:
1487
1488
    import gi
    gi.require_version('Gtk', '3.0')
1489
    from gi.repository import Gtk, Gdk, GdkPixbuf
1490
    from gi.repository import GObject as gobject
1491
1492
    from .gtk_draw import *
except (ImportError, RuntimeError) as e:
1493
    msg = "Error importing Gtk module: %s; GTK+ drawing will not work." % str(e)
1494
    warnings.warn(msg, RuntimeWarning)
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

def gen_surface(name):
    fobj, fmt = open_file(name)
    if fmt in ["png", "PNG"]:
        sfc = cairo.ImageSurface.create_from_png(fobj)
        return sfc
    else:
        pixbuf = GdkPixbuf.Pixbuf.new_from_file(name)
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, pixbuf.get_width(),
                                     pixbuf.get_height())
        cr = cairo.Context(surface)
        Gdk.cairo_set_source_pixbuf(cr, pixbuf, 0, 0)
        cr.paint()
        return surface
1509
#
1510
1511
# matplotlib
# ==========
1512
#
1513

1514
1515
1516
1517
1518
1519
1520
class GraphArtist(matplotlib.artist.Artist):
    """:class:`matplotlib.artist.Artist` specialization that draws
       :class:`graph_tool.Graph` instances.

    .. warning::

        Only Cairo-based backends are supported.
1521
1522
1523
1524

    """

    def __init__(self, g, pos, vprops, eprops, vorder, eorder,
1525
                nodesfirst, ax=None, **kwargs):
1526
1527
1528
1529
1530
1531
1532
1533
        matplotlib.artist.Artist.__init__(self)
        self.g = g
        self.pos = pos
        self.vprops = vprops
        self.eprops = eprops
        self.vorder = vorder
        self.eorder = eorder
        self.nodesfirst = nodesfirst
1534
        self.ax = ax
1535
1536
1537
1538
1539
        self.kwargs = kwargs

    def draw(self, renderer):
        if not isinstance(renderer, matplotlib.backends.backend_cairo.RendererCairo):
            raise NotImplementedError("graph plotting is supported only on Cairo backends")
1540
1541

        ctx = renderer.gc.ctx
1542
1543
1544
1545

        if not isinstance(ctx, cairo.Context):
            ctx = _UNSAFE_cairocffi_context_to_pycairo(ctx)

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
        ctx.save()

        if self.ax is not None:
            m = self.ax.transData.get_affine().get_matrix()
            m = cairo.Matrix(m[0,0], m[1, 0], m[0, 1], m[1, 1], m[0, 2], m[1,2])
            ctx.set_matrix(m)

            l, r = self.ax.get_xlim()
            b, t = self.ax.get_ylim()
            ctx.rectangle(l, b, r-l, t-b)
            ctx.clip()

1558
1559
        # flip y direction
        x, y = ungroup_vector_property(self.pos, [0, 1])
1560
1561
        l, t, r, b = ctx.clip_extents()
        y.fa = b + t - y.fa
1562
        pos = group_vector_property([x, y])
1563

1564
        cairo_draw(self.g, pos, ctx, self.vprops, self.eprops,
Tiago Peixoto's avatar
Tiago Peixoto committed
1565
                   self.vorder, self.eorder, self.nodesfirst, **self.kwargs)
1566
1567

        ctx.restore()
1568
1569
1570
1571
1572
1573
1574


#
# Drawing hierarchies
# ===================
#

1575
1576
def draw_hierarchy(state, pos=None, layout="radial", beta=0.8, node_weight=None,
                   vprops=None, eprops=None, hvprops=None, heprops=None,
1577
                   subsample_edges=None, rel_order="degree", deg_size=True,
1578
                   vsize_scale=1, hsize_scale=1, hshortcuts=0, hide=0,
1579
                   bip_aspect=1., empty_branches=False, **kwargs):
1580
1581
1582
1583
1584
    r"""Draw a nested block model state in a circular hierarchy layout with edge
    bundling.

    Parameters
    ----------
1585
    state : :class:`~graph_tool.inference.nested_blockmodel.NestedBlockState`
1586
        Nested block state to be drawn.
1587
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
1588
1589
        If supplied, this specifies a vertex property map with the positions of
        the vertices in the layout.
1590
    layout : ``str`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``"radial"``)
1591
1592
        If ``layout == "radial"`` :func:`~graph_tool.draw.radial_tree_layout`
        will be used. If ``layout == "sfdp"``, the hierarchy tree will be
1593
1594
        positioned using :func:`~graph_tool.draw.sfdp_layout`. If ``layout ==
        "bipartite"`` a bipartite layout will be used. If instead a
1595
        :class:`~graph_tool.VertexPropertyMap` is provided, it must correspond to the
1596
1597
1598
        position of the hierarchy tree.
    beta : ``float`` (optional, default: ``.8``)
        Edge bundling strength.
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
    vprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties. Individual properties may also be
        given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    eprops : dict (optional, default: ``None``)
        Dictionary with the edge properties. Individual properties may also be
        given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hvprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties for the *hierarchy tree*.
        Individual properties may also be given via the ``hvertex_<prop-name>``
        parameters, where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
    heprops : dict (optional, default: ``None``)
        Dictionary with the edge properties for the *hierarchy tree*. Individual
        properties may also be given via the ``hedge_<prop-name>`` parameters,
        where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
1619
1620
1621
    subsample_edges : ``int`` or list of :class:`~graph_tool.Edge` instances (optional, default: ``None``)
        If provided, only this number of random edges will be drawn. If the
        value is a list, it should include the edges that are to be drawn.
1622
    rel_order : ``str`` or ``None`` or :class:`~graph_tool.VertexPropertyMap` (optional, default: ``"degree"``)
1623
1624
        If ``degree``, the vertices will be ordered according to degree inside
        each group, and the relative ordering of the hierarchy branches. If
1625
        instead a :class:`~graph_tool.VertexPropertyMap` is provided, its value will
1626
        be used for the relative ordering.
1627
1628
1629
    deg_size : ``bool`` (optional, default: ``True``)
        If ``True``, the (total) node degrees will be used for the default
        vertex sizes..
1630
    vsize_scale : ``float`` (optional, default: ``1.``)
1631
        Multiplicative factor for the default vertex sizes.
1632
    hsize_scale : ``float`` (optional, default: ``1.``)
1633
        Multiplicative factor for the default sizes of the hierarchy nodes.
1634
1635
1636
1637
1638
    hshortcuts : ``int`` (optional, default: ``0``)
        Include shortcuts to the number of upper layers in the hierarchy
        determined by this parameter.
    hide : ``int`` (optional, default: ``0``)
        Hide upper levels of the hierarchy.
1639
1640
    bip_aspect : ``float`` (optional, default: ``1.``)
        If ``layout == "bipartite"``, this will define the aspect ratio of layout.
1641
    empty_branches : ``bool`` (optional, default: ``False``)
1642
1643
        If ``empty_branches == False``, dangling branches at the upper layers
        will be pruned.
1644
    vertex_* : :class:`~graph_tool.VertexPropertyMap` or arbitrary types (optional, default: ``None``)
1645
1646
1647
1648
        Parameters following the pattern ``vertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``vprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
1649
    edge_* : :class:`~graph_tool.EdgePropertyMap` or arbitrary types (optional, default: ``None``)
1650
1651
1652
        Parameters following the pattern ``edge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``eprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
1653
    hvertex_* : :class:`~graph_tool.VertexPropertyMap` or arbitrary types (optional, default: ``None``)
1654
1655
1656
1657
        Parameters following the pattern ``hvertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``hvprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
1658
    hedge_* : :class:`~graph_tool.EdgePropertyMap` or arbitrary types (optional, default: ``None``)
1659
1660
1661
        Parameters following the pattern ``hedge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``heprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
1662
    **kwargs :
1663
1664
        All remaining keyword arguments will be passed to the
        :func:`~graph_tool.draw.graph_draw` function.
1665
1666
1667

    Returns
    -------
1668
    pos : :class:`~graph_tool.VertexPropertyMap`
1669
1670
1671
1672
        This is a vertex property map with the positions of
        the vertices in the layout.
    t : :class:`~graph_tool.Graph`
        This is a the hierarchy tree used in the layout.
1673
    tpos : :class:`~graph_tool.VertexPropertyMap`
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
        This is a vertex property map with the positions of
        the hierarchy tree in the layout.

    Examples
    --------
    .. testsetup:: draw_hierarchy

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: draw_hierarchy

       >>> g = gt.collection.data["celegansneural"]
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
       >>> gt.draw_hierarchy(state, output="celegansneural_nested_mdl.pdf")
       (...)

    .. testcleanup:: draw_hierarchy

       gt.draw_hierarchy(state, output="celegansneural_nested_mdl.png")

    .. figure:: celegansneural_nested_mdl.*
       :align: center

       Hierarchical block partition of the C. elegans neural network, which
       minimizes the description length of the network according to the nested
       (degree-corrected) stochastic blockmodel.


    References
    ----------
    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
1709

1710
1711
1712
1713
    """

    g = state.g

1714
1715
    overlap = state.levels[0].overlap
    if overlap:
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
        ostate = state.levels[0]
        bv, bcin, bcout, bc = ostate.get_overlap_blocks()
        be = ostate.get_edge_blocks()
        orig_state = state
        state = state.copy()
        b = ostate.get_majority_blocks()
        state.levels[0] = BlockState(g, b=b)
    else:
        b = state.levels[0].b

    if subsample_edges is not None:
        emask = g.new_edge_property("bool", False)
        if isinstance(subsample_edges, int):
            eidx = g.edge_index.copy("int").fa.copy()
            numpy.random.shuffle(eidx)
            emask = g.new_edge_property("bool")
            emask.a[eidx[:subsample_edges]] = True
        else:
            for e in subsample_edges:
                emask[e] = True
        g = GraphView(g, efilt=emask)

1738
1739
    t, tb, tvorder = get_hierarchy_tree(state,
                                        empty_branches=empty_branches)
1740
1741

    if layout == "radial":
1742
1743
1744
        if rel_order == "degree":
            rel_order = g.degree_property_map("total")
        vorder = t.own_property(rel_order.copy())
1745
1746
        if pos is not None:
            x, y = ungroup_vector_property(pos, [0, 1])
1747
1748
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
1749
            angle = g.new_vertex_property("double")
1750
            angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
1751
            vorder = t.own_property(angle)
1752
1753
1754
        if node_weight is not None:
            node_weight = t.own_property(node_weight.copy())
            node_weight.a[node_weight.a == 0] = 1
1755
        tpos = radial_tree_layout(t, root=t.vertex(t.num_vertices() - 1,
1756
                                                   use_index=False),
1757
                                  node_weight=node_weight,
1758
1759
                                  rel_order=vorder,
                                  rel_order_leaf=True)
1760
    elif layout == "bipartite":
1761
        tpos = get_bip_hierachy_pos(state, aspect=bip_aspect,
1762
1763
                                    node_weight=node_weight)
        tpos = t.own_property(tpos)
1764
1765
1766
1767
1768
    elif layout == "sfdp":
        if pos is None:
            tpos = sfdp_layout(t)
        else:
            x, y = ungroup_vector_property(pos, [0, 1])
1769
1770
1771
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
            K = numpy.sqrt(x.fa.std() + y.fa.std()) / 10
1772
1773
            tpos = t.new_vertex_property("vector<double>")
            for v in t.vertices():
1774
                if int(v) < g.num_vertices(True):
1775
1776
1777
1778
                    tpos[v] = [x[v], y[v]]
                else:
                    tpos[v] = [0, 0]
            pin = t.new_vertex_property("bool")
1779
            pin.a[:g.num_vertices(True)] = True
1780
1781
1782
1783
            tpos = sfdp_layout(t, K=K, pos=tpos, pin=pin, multilevel=False)
    else:
        tpos = t.own_property(layout)

1784
1785
    hvvisible = t.new_vertex_property("bool", True)
    if hide > 0:
1786
        root = t.vertex(t.num_vertices(True) - 1)
1787
1788
1789
        dist = shortest_distance(t, source=root)
        hvvisible.fa = dist.fa >= hide

1790
1791
    pos = g.own_property(tpos.copy())

1792
    cts = get_hierarchy_control_points(g, t, tpos, beta,
1793
                                       max_depth=len(state.levels) - hshortcuts)
1794

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
    vprops_orig = vprops
    eprops_orig = eprops
    hvprops_orig = vprops
    heprops_orig = eprops
    kwargs_orig = kwargs

    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
    vprops.update(props)
    vprops.setdefault("fill_color", b)
    vprops.setdefault("color", b)
1808
    vprops.setdefault("shape", _vdefaults["shape"] if not overlap else "pie")
1809
1810
    s = max(200 / numpy.sqrt(g.num_vertices()), 5)
    vprops.setdefault("size", prop_to_size(g.degree_property_map("total"), s/5, s))
1811
1812
1813
1814
1815

    if vprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(g, pos, text_pos=True)
        vprops["text_position"] = text_pos
        vprops["text_rotation"] = angle
1816
1817
1818
1819
1820
1821
1822
1823
        toffset = vprops.get("text_offset", None)
        if toffset is not None:
            if not isinstance(toffset, PropertyMap):
                toffset = g.new_vp("vector<double>", val=toffset)
            xo, yo = ungroup_vector_property(toffset, [0, 1])
            xo.a[text_pos.a == numpy.pi] *= -1
            toffset = group_vector_property([xo, yo])
            vprops["text_offset"] = toffset
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836

    self_loops = label_self_loops(g, mark_only=True)
    if self_loops.fa.max() > 0:
        parallel_distance = vprops.get("size", _vdefaults["size"])
        if isinstance(parallel_distance, PropertyMap):
            parallel_distance = parallel_distance.fa.mean()
        cts_p = position_parallel_edges(g, pos, numpy.nan,
                                        parallel_distance)
        gu = GraphView(g, efilt=self_loops)
        for e in gu.edges():
            cts[e] = cts_p[e]


1837
1838
1839
1840
1841
1842
1843
    vprops = _convert_props(vprops, "v", g, kwargs.get("vcmap", default_cm),
                            pmap_default=True)

    props, kwargs = parse_props("edge", kwargs)
    eprops.update(props)
    eprops.setdefault("control_points", cts)
    eprops.setdefault("pen_width", _edefaults["pen_width"])
1844
    eprops.setdefault("color", list(_edefaults["color"][:-1]) + [.6])
1845
    eprops.setdefault("end_marker", "arrow" if g.is_directed() else "none")
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
    eprops = _convert_props(eprops, "e", g, kwargs.get("ecmap", default_cm),
                            pmap_default=True)

    hvprops = hvprops.copy() if hvprops is not None else {}
    heprops = heprops.copy() if heprops is not None else {}

    props, kwargs = parse_props("hvertex", kwargs)
    hvprops.update(props)

    blue = list(color_converter.to_rgba("#729fcf"))
    blue[-1] = .6
    hvprops.setdefault("fill_color", blue)
    hvprops.setdefault("color", [1, 1, 1, 0])
    hvprops.setdefault("shape", "square")
    hvprops.setdefault("size", 10)

1862
1863
1864
1865
    if hvprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(t, tpos, text_pos=True)
        hvprops["text_position"] = text_pos
        hvprops["text_rotation"] = angle
1866
1867
1868
1869
1870
1871
1872
1873
        toffset = hvprops.get("text_offset", None)
        if toffset is not None:
            if not isinstance(toffset, PropertyMap):
                toffset = t.new_vp("vector<double>", val=toffset)
            xo, yo = ungroup_vector_property(toffset, [0, 1])
            xo.a[text_pos.a == numpy.pi] *= -1
            toffset = group_vector_property([xo, yo])
            hvprops["text_offset"] = toffset
1874

1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
    hvprops = _convert_props(hvprops, "v", t, kwargs.get("vcmap", default_cm),
                             pmap_default=True)

    props, kwargs = parse_props("hedge", kwargs)
    heprops.update(props)

    heprops.setdefault("color", blue)
    heprops.setdefault("end_marker", "arrow")
    heprops.setdefault("marker_size", 8.)
    heprops.setdefault("pen_width", 1.)

    heprops = _convert_props(heprops, "e", t, kwargs.get("ecmap", default_cm),
                             pmap_default=True)
1888

1889
1890
    vcmap = kwargs.get("vcmap", default_cm)
    ecmap = kwargs.get("ecmap", vcmap)
1891
1892
1893

    B = state.levels[0].B

1894
    if overlap and "pie_fractions" not in vprops:
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
        vprops["pie_fractions"] = bc.copy("vector<double>")
        if "pie_colors" not in vprops:
            vertex_pie_colors = g.new_vertex_property("vector<double>")
            nodes = defaultdict(list)
            def conv(k):
                clrs = [vcmap(r / (B - 1) if B > 1 else 0) for r in k]
                return [item for l in clrs for item in l]
            map_property_values(bv, vertex_pie_colors, conv)
            vprops["pie_colors"] = vertex_pie_colors

    gradient = eprops.get("gradient", None)
1906
1907
    if gradient is None:
        gradient = g.new_edge_property("double")
1908
        gradient = group_vector_property([gradient])
1909
1910
        ecolor = eprops.get("ecolor", _edefaults["color"])
        eprops["gradient"] = gradient
1911
        if overlap:
1912
            for e in g.edges():                       # ******** SLOW *******
1913
                r, s = be[e]
1914
                if not g.is_directed() and e.source() > e.target():
1915
1916
1917
                    r, s = s, r
                gradient[e] = [0] + list(vcmap(r / (B - 1))) + \
                              [1] + list(vcmap(s / (B - 1)))
1918
1919
1920
1921
                if isinstance(ecolor, PropertyMap):
                    gradient[e][4] = gradient[e][9] = ecolor[e][3]
                else:
                    gradient[e][4] = gradient[e][9] = ecolor[3]
1922
1923
1924


    t_orig = t
1925
    t = GraphView(t,
1926
                  vfilt=lambda v: int(v) >= g.num_vertices(True) and hvvisible[v])
1927

1928
1929
    t_vprops = {}
    t_eprops = {}
1930

1931
1932
1933
1934
1935
1936
1937
    props = []
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = (vprops.get(k, None), hvprops.get(k, None))
        props.append(t_vprops[k])
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = (eprops.get(k, None), heprops.get(k, None))
        props.append(t_eprops[k])
1938

1939
1940
1941
    props.append((pos, tpos))
    props.append((g.vertex_index, tb))
    props.append((b, None))
1942
1943
1944
1945
1946
    if "eorder" in kwargs:
        eorder = kwargs["eorder"]
        props.append((eorder,
                      t.new_ep(eorder.value_type(),
                               eorder.fa.max() + 1)))
1947

1948
    u, props = graph_union(g, t, props=props)
1949

1950
1951
1952
1953
1954
1955
1956
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = props.pop(0)
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = props.pop(0)
    pos = props.pop(0)
    tb = props.pop(0)
    b = props.pop(0)
1957
1958
    if "eorder" in kwargs:
        eorder = props.pop(0)
1959
1960
1961

    def update_cts(widget, gg, picked, pos, vprops, eprops):
        vmask = gg.vertex_index.copy("int")
1962
        u = GraphView(gg, directed=False, vfilt=vmask.fa < g.num_vertices(True))
1963
        cts = eprops["control_points"]
1964
        get_hierarchy_control_points(u, t_orig, pos, beta, cts=cts,
1965
                                     max_depth=len(state.levels) - hshortcuts)
1966
1967
1968

    def draw_branch(widget, gg, key_id, picked, pos, vprops, eprops):
        if key_id == ord('b'):
1969
1970
            if picked is not None and not isinstance(picked, PropertyMap) and int(picked) > g.num_vertices(True):
                p = shortest_path(t_orig, source=t_orig.vertex(t_orig.num_vertices(True) - 1),
1971
1972
1973
1974
1975
1976
1977
                                  target=picked)[0]
                l = len(state.levels) - max(len(p), 1)

                bstack = state.get_bstack()
                bs = [s.vp["b"].a for s in bstack[:l+1]]
                bs[-1][:] = 0

1978
                if not overlap:
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
                    b = state.project_level(l).b
                    u = GraphView(g, vfilt=b.a == tb[picked])
                    u.vp["b"] = state.levels[0].b
                    u = Graph(u, prune=True)
                    b = u.vp["b"]
                    bs[0] = b.a
                else:
                    be = orig_state.project_level(l).get_edge_blocks()
                    emask = g.new_edge_property("bool")
                    for e in g.edges():
                        rs = be[e]
                        if rs[0] == tb[picked] and rs[1] == tb[picked]:
                            emask[e] = True
1992
1993
1994
                    u = GraphView(g, efilt=emask)
                    d = u.degree_property_map("total")
                    u = GraphView(u, vfilt=d.fa > 0)
1995
1996
1997
1998
1999
2000
                    u.ep["be"] = orig_state.levels[0].get_edge_blocks()
                    u = Graph(u, prune=True)
                    be = u.ep["be"]
                    s = OverlapBlockState(u, b=be)
                    bs[0] = s.b.a.copy()