__init__.py 64.3 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2013 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   kcore_decomposition
52
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
53
   is_DAG
54
   is_planar
55
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
56
   edge_reciprocity
57
58
59

Contents
++++++++
60

61
62
"""

63
64
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
65
from .. dl_import import dl_import
66
dl_import("from . import libgraph_tool_topology")
67

68
from .. import _prop, Vector_int32_t, _check_prop_writable, \
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
Tiago Peixoto's avatar
Tiago Peixoto committed
70
     libcore, _get_rng, _degree
71
import random, sys, numpy
72
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
73
           "max_cardinality_matching", "max_independent_vertex_set",
74
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
75
           "topological_sort", "transitive_closure", "tsp_tour",
76
77
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
80
           "label_out_component", "kcore_decomposition", "shortest_distance",
           "shortest_path", "pseudo_diameter", "is_bipartite", "is_DAG",
           "is_planar", "make_maximal_planar", "similarity", "edge_reciprocity"]
81
82
83
84
85
86
87
88
89
90


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
91
        Second graph to be compared.
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
118
119
120
121
122
123
124
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

125
126
127
128
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
Tiago Peixoto's avatar
Tiago Peixoto committed
129
130
    >>> gt.random_rewire(u)
    21
131
    >>> gt.similarity(u, g)
Tiago Peixoto's avatar
Tiago Peixoto committed
132
    0.03
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
149

Tiago Peixoto's avatar
Tiago Peixoto committed
150

151
def isomorphism(g1, g2, isomap=False):
152
153
154
155
156
157
158
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
159
160
161
162
163
164
165
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

166
167
168
169
170
171
172
173
174
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

175
    """
176
177
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
178
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
179
                             _prop("v", g1, imap))
180
181
182
183
184
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
185

186
187
188
def subgraph_isomorphism(sub, g, max_n=0, vertex_label=None, edge_label=None,
                         random=False):
    r"""Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n` subgraphs, if `max_n > 0`).
189

190

Tiago Peixoto's avatar
Tiago Peixoto committed
191
192
193
194
195
196
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
197
    max_n : int (optional, default: `0`)
Tiago Peixoto's avatar
Tiago Peixoto committed
198
199
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
200
201
202
203
204
205
206
207
    vertex_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify vertex labels
        which should match, in addition to the topological isomorphism.
    edge_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify edge labels
        which should match, in addition to the topological isomorphism.
Tiago Peixoto's avatar
Tiago Peixoto committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    random : bool (optional, default: False)
        If `True`, the vertices of `g` are indexed in random order before
        the search.

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.
    edge_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing edge property map objects which indicate different
        isomorphism mappings. The property maps edges in `sub` to the
        corresponding edge index in `g`.

    Notes
    -----
    The algorithm used is described in [ullmann-algorithm-1976]_. It has a
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
229
230
231

    Examples
    --------
232
233
234
235
236
237
238
239
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(44)
       gt.seed_rng(44)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
240
    >>> g = gt.random_graph(30, lambda: (poisson(6.1), poisson(6.1)))
241
    >>> sub = gt.random_graph(10, lambda: (poisson(1.9), poisson(1.9)))
242
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
243
    >>> print(len(vm))
Tiago Peixoto's avatar
Tiago Peixoto committed
244
    35
245
    >>> for i in range(len(vm)):
246
247
248
249
250
251
252
253
254
255
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
256
257
258
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
259
    ...               output="subgraph-iso-embed.pdf")
260
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
261
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
262
263
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
264
265
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
266

267

Tiago Peixoto's avatar
Tiago Peixoto committed
268
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
269
270
271

    References
    ----------
272
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
273
       isomorphism", Journal of the ACM 23 (1): 31-42, 1976, :doi:`10.1145/321921.321925`
274
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
275
276

    """
277
278
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
279
280
281
282
283
284
285
286
    if vertex_label is None:
        vertex_label = (None, None)
    elif vertex_label[0].value_type() != vertex_label[1].value_type():
        raise ValueError("Both vertex label property maps must be of the same type!")
    if edge_label is None:
        edge_label = (None, None)
    elif edge_label[0].value_type() != edge_label[1].value_type():
        raise ValueError("Both edge label property maps must be of the same type!")
287
288
    vmaps = []
    emaps = []
289
    if random:
290
        rng = _get_rng()
291
    else:
292
        rng = libcore.rng_t()
293
294
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
295
296
297
298
                                _prop("v", sub, vertex_label[0]),
                                _prop("v", g, vertex_label[1]),
                                _prop("e", sub, edge_label[0]),
                                _prop("e", g, edge_label[1]),
299
                                vmaps, emaps, max_n, rng)
300
    for i in range(len(vmaps)):
301
302
303
304
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
305

306
307
308
309
310
311
312
313
314
315
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
316
    `sub`.
317
    """
318
    if vmask is None:
319
        vmask = g.new_vertex_property("bool")
320
    if emask is None:
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
335

Tiago Peixoto's avatar
Tiago Peixoto committed
336

337
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
338
339
340
341
342
343
344
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
345
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
346
347
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
348
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
349
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
350
        is used. Otherwise, Kruskal's algorithm is used.
351
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
367
368
369
370
371
372
373
374
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
375
376
377
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
378
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
379
    >>> tree = gt.min_spanning_tree(g, weights=weight)
380
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
381
382
    <...>
    >>> g.set_edge_filter(tree)
383
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
384
385
386
    <...>


387
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
388
        :width: 400px
389
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
390
        :width: 400px
391
392

    *Left:* Original graph, *Right:* The minimum spanning tree.
393
394
395
396
397

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
398
399
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
400
401
402
403
404
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
405
    if tree_map is None:
406
407
408
409
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

410
411
412
413
414
415
416
417
418
419
420
    u = GraphView(g, directed=False)
    if root is None:
        libgraph_tool_topology.\
               get_kruskal_spanning_tree(u._Graph__graph,
                                         _prop("e", g, weights),
                                         _prop("e", g, tree_map))
    else:
        libgraph_tool_topology.\
               get_prim_spanning_tree(u._Graph__graph, int(root),
                                      _prop("e", g, weights),
                                      _prop("e", g, tree_map))
421
    return tree_map
422

Tiago Peixoto's avatar
Tiago Peixoto committed
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
453
454
455
456
457
458
459
460
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
461
462
463
464
465
466
467
468
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
469
    >>> gt.graph_draw(g, pos=pos, output="triang_random_span_tree.pdf")
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    <...>


    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
500
501
502
    u = GraphView(g, vfilt=l)
    if u.num_vertices() != g.num_vertices():
        raise ValueError("There must be a path from all vertices to the root vertex: %d" % int(root) )
503
504
505
506

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
507
                             _prop("e", g, tree_map), _get_rng())
508
509
510
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
538
539
540
541
542
543
544
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
545
546
547
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
548
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
549
    >>> dom = gt.dominator_tree(g, root[0])
550
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
551
    [ 0  0  0  0  0  0 62  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
552
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Tiago Peixoto's avatar
Tiago Peixoto committed
553
554
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
555
556
557

    References
    ----------
558
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
559
560

    """
561
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
562
563
564
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
565
566
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
567
        raise ValueError("dominator tree requires a directed graph.")
568
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
569
570
571
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
572

Tiago Peixoto's avatar
Tiago Peixoto committed
573

574
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
589
590
591
592
593
594
595
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
596
597
598
599
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
600
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
601
602
    [ 1 14  2  7 17  0  3  4  5  6  8  9 22 10 11 12 13 16 23 27 15 18 19 20 21
     24 25 26 28 29]
Tiago Peixoto's avatar
Tiago Peixoto committed
603
604
605

    References
    ----------
606
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
607
608
609
610
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

611
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
612
613
614
615
616
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
    return topological_order.a.copy()
617

Tiago Peixoto's avatar
Tiago Peixoto committed
618

619
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
620
621
622
623
624
625
626
627
628
629
630
631
632
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
633
634
635
636
637
638
639
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
640
641
642
643
644
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
645
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
646
647
648
649
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

650
651
652
653
654
655
656
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
657

658
def label_components(g, vprop=None, directed=None, attractors=False):
659
    """
660
    Label the components to which each vertex in the graph belongs. If the
661
662
    graph is directed, it finds the strongly connected components.

663
664
665
    A property map with the component labels is returned, together with an
    histogram of component labels.

666
667
    Parameters
    ----------
668
    g : :class:`~graph_tool.Graph`
669
        Graph to be used.
670
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
671
672
        Vertex property to store the component labels. If none is supplied, one
        is created.
673
    directed : bool (optional, default: ``None``)
674
675
        Treat graph as directed or not, independently of its actual
        directionality.
676
677
678
679
    attractors : bool (optional, default: ``False``)
        If ``True``, and the graph is directed, an additional array with Boolean
        values is returned, specifying if the strongly connected components are
        attractors or not.
680
681
682

    Returns
    -------
683
    comp : :class:`~graph_tool.PropertyMap`
684
        Vertex property map with component labels.
685
686
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
687
688
689
690
    is_attractor : :class:`~numpy.ndarray`
        A Boolean array specifying if the strongly connected components are
        attractors or not. This returned only if ``attractors == True``, and the
        graph is directed.
691
692
693
694
695
696

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

697
    The algorithm runs in :math:`O(V + E)` time.
698
699
700

    Examples
    --------
701
702
703
704
705
706
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

707
708
    >>> g = gt.random_graph(100, lambda: (poisson(2), poisson(2)))
    >>> comp, hist, is_attractor = gt.label_components(g, attractors=True)
709
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
710
711
712
713
    [14 15 14 14 14  5 14 14 18 14 14  8 14 14 13 14 14 21 14 14  7 23 10 14 14
     14 24  4 14 14  0 14 14 14 25 14 14  1 14 26 14 19  9 14 14  3 14 14 27 28
     29 14 14  6 14 14 14 30 14 14 20 14  2 14 22 33 34 14 14 14 35 14 14 16 14
     11 36 37 14 14 31 14 14 17 14 14 14 14 14  0 14 38 39 32 14 12 14 40 14 14]
714
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
715
716
    [ 2  1  1  1  1  1  1  1  1  1  1  1  1  1 59  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1]
717
    >>> print(is_attractor)
Tiago Peixoto's avatar
Tiago Peixoto committed
718
719
    [ True  True  True False False False  True  True False False False False
      True  True False False False False False False False False  True False
720
     False False False False False False False False False False False False
Tiago Peixoto's avatar
Tiago Peixoto committed
721
     False False False False False]
722
723
    """

724
    if vprop is None:
725
726
727
728
729
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

730
731
    if directed is not None:
        g = GraphView(g, directed=directed)
732

733
734
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
735
736
737
738
739
740
741
742
743

    if attractors and g.is_directed() and directed != False:
        is_attractor = numpy.ones(len(hist), dtype="bool")
        libgraph_tool_topology.\
               label_attractors(g._Graph__graph, _prop("v", g, vprop),
                                is_attractor)
        return vprop, hist, is_attractor
    else:
        return vprop, hist
744
745
746
747


def label_largest_component(g, directed=None):
    """
748
749
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
750
751
752
753
754
755
756
757
758
759
760
761
762
763

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
764
         Boolean vertex property map which labels the largest component.
765
766
767
768
769
770
771

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
772
773
774
775
776
777
778
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

779
780
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
781
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
782
783
784
    [1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
     0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
     0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
785
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
786
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
787
    16
788
789
790
791
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
792
793
794
795
796
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
797
    return label
798

Tiago Peixoto's avatar
Tiago Peixoto committed
799

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
823
824
825
826
827
828
829
830
831
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
832
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
833
834
835
    [1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0
     1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0]
836
837
838

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
839
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
840
    ...                            g.vertex(1))
841
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
842
843
844
    [1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0
     0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1
     1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0]
845
846
847
848
849
850
851
852
853
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


854
def label_biconnected_components(g, eprop=None, vprop=None):
855
856
857
858
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

859
860
861
862
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
906
907
908
909
910
911
912
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
913
    >>> g = gt.random_graph(100, lambda: poisson(2), directed=False)
914
    >>> comp, art, hist = gt.label_biconnected_components(g)
915
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
916
917
918
919
    [51 51 51 51 51 51 11 52 51 51 44 42 41 45 49 23 19 51 51 32 38 51 24 37 51
     51 51 10  8 51 20 43 51 51 51 51 51 47 46 51 51 13 14 51 51 51 51 33 30 51
      1 21 51 51 51 35 36  6 51 26 27  7 12  4  3 29 28 51 51 51 31 51 51  0 39
     51 51 51 34 40 51 51  9 17 51 51 18 15 22  2 16 50  5 48 51 51 53 51 51 25]
920
    >>> print(art.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
921
922
923
    [1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0
     0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1
     1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0]
924
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
925
926
927
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
      1 47  1  1]
928
    """
929

930
    if vprop is None:
931
        vprop = g.new_vertex_property("bool")
932
    if eprop is None:
933
934
935
936
937
938
939
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

940
941
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
942
943
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
944
    return eprop, vprop, hist
945

Tiago Peixoto's avatar
Tiago Peixoto committed
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
def kcore_decomposition(g, deg="out", vprop=None):
    """
    Perform a k-core decomposition of the given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    deg : string
        Degree to be used for the decomposition. It can be either "in", "out" or
        "total", for in-, out-, or total degree of the vertices.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex property to store the decomposition. If ``None`` is supplied,
        one is created.

    Returns
    -------
    kval : :class:`~graph_tool.PropertyMap`
        Vertex property map with the k-core decomposition, i.e. a given vertex v
        belongs to the ``kval[v]``-core.

    Notes
    -----

    The k-core is a maximal set of vertices such that its induced subgraph only
    contains vertices with degree larger than or equal to k.

    This algorithm is described in [batagelk-algorithm]_ and runs in :math:`O(V + E)`
    time.

    Examples
    --------

    >>> g = gt.collection.data["netscience"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> kcore = gt.kcore_decomposition(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.png")

    .. figure:: netsci-kcore.*
        :align: center

        K-core decomposition of a network of network scientists.

    References
    ----------
    .. [k-core] http://en.wikipedia.org/wiki/Degeneracy_%28graph_theory%29
    .. [batagelk-algorithm] V. Batagelj, M. Zaversnik, "An O(m) Algorithm for
       Cores Decomposition of Networks", 2003, :arxiv:`cs/0310049`

    """

    if vprop is None:
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    if deg not in ["in", "out", "total"]:
        raise ValueError("invalid degree: " + str(deg))

    if g.is_directed():
        if deg == "out":
            g = GraphView(g, reversed=True)
        if deg == "total":
            g = GraphView(g, directed=False)

    libgraph_tool_topology.\
               kcore_decomposition(g._Graph__graph, _prop("v", g, vprop),
                                   _degree(g, deg))
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1022

1023
def shortest_distance(g, source=None, target=None, weights=None, max_dist=None,
1024
1025
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
1026
    """
1027
1028
1029
    Calculate the distance from a source to a target vertex, or to of all
    vertices from a given source, or the all pairs shortest paths, if the source
    is not specified.
1030
1031
1032
1033
1034
1035

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1036
        Source vertex of the search. If unspecified, the all pairs shortest
1037
        distances are computed.
1038
1039
1040
    target : :class:`~graph_tool.Vertex` (optional, default: None)
        Target vertex of the search. If unspecified, the distance to all
        vertices from the source will be computed.
1041
1042
1043
1044
1045
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
Tiago Peixoto's avatar
Tiago Peixoto committed
1046
        searched. This parameter has no effect if source is None.
1047
1048
1049
1050
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
1051
1052
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
1053
1054
1055
1056
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
1057
1058
1059
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
1082
1083
1084
1085
1086
1087
1088
1089
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
1090
1091
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
1092
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1110

1111
    >>> dist = gt.shortest_distance(g)
1112
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1130
1131
1132
1133
1134

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1135
1136
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1137
1138
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1139
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1140
1141
1142
1143
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

1144
    if weights is None:
1145
1146
1147
1148
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1149
1150
    if dist_map is None:
        if source is not None:
1151
1152
1153
1154
1155
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1156
    if source is not None:
1157
1158
1159
1160
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1161
    if max_dist is None:
1162
1163
        max_dist = 0

1164
    if directed is not None:
1165
1166
1167
        u = GraphView(g, directed=directed)
    else:
        u = g
1168

1169
1170
1171
    if target is None:
        target = -1

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
    if source is not None:
        pmap = g.copy_property(u.vertex_index, value_type="int64_t")
        libgraph_tool_topology.get_dists(g._Graph__graph,
                                         int(source),
                                         int(target),
                                         _prop("v", g, dist_map),
                                         _prop("e", g, weights),
                                         _prop("v", g, pmap),
                                         float(max_dist))
    else:
        libgraph_tool_topology.get_all_dists(u._Graph__graph,
1183
                                             _prop("v", g, dist_map),
1184
                                             _prop("e", g, weights), dense)
1185

1186
1187
1188
1189

    if source is not None and target != -1:
        dist_map = dist_map[target]

1190
    if source is not None and pred_map:
1191
1192
1193
1194
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
1206
    target : :class:`~graph_tool.Vertex`
1207
1208
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
1209
        The edge weights.
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1233
1234
1235
1236
1237
1238
1239
1240
1241
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(43)
       gt.seed_rng(43)

    >>> from numpy.random import poisson
    >>> g = gt.random_graph(300, lambda: (poisson(4), poisson(4)))
1242
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1243
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1244
    ['10', '131', '184', '265', '223', '11']
1245
    >>> print([str(e) for e in elist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1246
    ['(10, 131)', '(131, 184)', '(184, 265)', '(265, 223)', '(223, 11)']
1247
1248
1249
1250
1251

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1252
1253
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1254
1255
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1256
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1257
1258
    """

1259
    if pred_map is None:
1260
1261
        pred_map = shortest_distance(g, source, target,
                                     weights=weights,
Tiago Peixoto's avatar
Tiago Peixoto committed
1262
                                     pred_map=True)[1]
1263

1264
    if pred_map[target] == int(target):  # no path to target
1265
1266
1267
1268
1269
        return [], []

    vlist = [target]
    elist = []

1270
    if weights is not None:
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1284
                if weights is not None:
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1296

Tiago Peixoto's avatar
Tiago Peixoto committed
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1338
1339
1340
1341
1342
1343
1344
1345
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
1346
1347
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1348
    >>> print(dist)
Tiago Peixoto's avatar
Tiago Peixoto committed
1349
    9.0
1350
    >>> print(int(ends[0]), int(ends[1]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1351
    0 140
Tiago Peixoto's avatar
Tiago Peixoto committed
1352
1353
1354
1355
1356
1357
1358

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
1359
        source = g.vertex(0, use_index=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
def is_bipartite(g, partition=False):
    """
    Test if the graph is bipartite.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    partition : bool (optional, default: ``False``)
        If ``True``, return the two partitions in case the graph is bipartite.

    Returns
    -------
    is_bipartite : bool
        Whether or not the graph is bipartite.
    partition : :class:`~graph_tool.PropertyMap` (only if `partition=True`)
        A vertex property map with the graph partitioning (or `None`) if the
        graph is not bipartite.

    Notes
    -----

    An undirected graph is bipartite if one can partition its set of vertices
    into two sets, such that all edges go from one set to the other.

    This algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> is_bi, part = gt.is_bipartite(g, partition=True)
    >>> print(is_bi)
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1408
    >>> gt.graph_draw(g, vertex_fill_color=part, output_size=(300, 300), output="bipartite.pdf")
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
    <...>

    .. figure:: bipartite.*
        :align: center

        Bipartition of a 2D lattice.

    References
    ----------
    .. [boost-bipartite] http://www.boost.org/libs/graph/doc/is_bipartite.html
    """

    if partition:
        part = g.new_vertex_property("bool")
    else:
        part = None
    g = GraphView(g, directed=False)
    is_bi = libgraph_tool_topology.is_bipartite(g._Graph__graph,
                                                _prop("v", g, part))
    if partition:
        return is_bi, part
    else:
        return is_bi


1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
1472
1473
1474
1475
1476
1477
1478
1479
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
1480
1481
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
1482
    >>> print(p)
1483
    True
Tiago Peixoto's avatar