__init__.py 12.4 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
6
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@forked.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
22
23
"""
``graph_tool.stats`` - Graph Statistics
---------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Summary
+++++++

.. autosummary::
   :nosignatures:

   vertex_hist
   edge_hist
   vertex_average
   edge_average
   label_parallel_edges
   remove_parallel_edges
   label_self_loops
   remove_self_loops
   remove_labeled_edges
   distance_histogram

Contents
++++++++

45
46
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
47
48
from .. dl_import import dl_import
dl_import("import libgraph_tool_stats")
Tiago Peixoto's avatar
Tiago Peixoto committed
49

50
from .. core import _degree, _prop
Tiago Peixoto's avatar
Tiago Peixoto committed
51
from numpy import *
52
53
import numpy
import sys
Tiago Peixoto's avatar
Tiago Peixoto committed
54

55
__all__ = ["vertex_hist", "edge_hist", "vertex_average", "edge_average",
56
           "label_parallel_edges", "remove_parallel_edges",
57
           "label_self_loops", "remove_self_loops", "remove_labeled_edges",
58
           "distance_histogram"]
Tiago Peixoto's avatar
Tiago Peixoto committed
59

60
def vertex_hist(g, deg, bins=[1], float_count=True):
61
62
63
64
65
    """
    Return the vertex histogram of the given degree type or property.

    Parameters
    ----------
66
    g : :class:`~graph_tool.Graph`
67
        Graph to be used.
68
    deg : string or :class:`~graph_tool.PropertyMap`
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        Degree or property to be used for the histogram. It can be either "in",
        "out" or "total", for in-, out-, or total degree of the vertices. It can
        also be a vertex property map.
    bins : list of bins
        List of bins to be used for the histogram. The values given represent
        the edges of the bins (i,e, lower bounds). If the list contains only one
        value, this will be used to automatically create an appropriate bin
        range, with a constant lenght given by this value.
    float_count : bool (optional, default: True)
        If True, the counts in each histogram bin will be returned as floats. If
        False, they will be returned as integers.

    Returns
    -------
83
    counts : :class:`~numpy.ndarray`
84
        The bin counts.
85
    bins : :class:`~numpy.ndarray`
86
87
88
89
90
91
92
        The bin edges.

    See Also
    --------
    edge_hist: Edge histograms.
    vertex_average: Average of vertex properties, degrees.
    edge_average: Average of edge properties.
93
    distance_histogram : Shortest-distance histogram.
94
95
96
97
98
99
100
101
102
103
104

    Notes
    -----
    The algorithm runs in :math:`O(|V|)` time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, seed
    >>> seed(42)
105
    >>> g = gt.random_graph(1000, lambda: (poisson(5), poisson(5)))
106
    >>> print gt.vertex_hist(g, "out")
Tiago Peixoto's avatar
Tiago Peixoto committed
107
108
    [array([  10.,   30.,   86.,  138.,  166.,  154.,  146.,  129.,   68.,
             36.,   23.,    8.,    3.,    2.,    0.,    1.]), array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15], dtype=uint64)]
109
110
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
111
    ret = libgraph_tool_stats.\
112
          get_vertex_histogram(g._Graph__graph, _degree(g, deg), bins)
113
    return [array(ret[0], dtype="float64") if float_count else ret[0], ret[1]]
Tiago Peixoto's avatar
Tiago Peixoto committed
114

115
def edge_hist(g, eprop, bins=[1], float_count=True):
116
117
118
119
120
    """
    Return the edge histogram of the given property.

    Parameters
    ----------
121
    g : :class:`~graph_tool.Graph`
122
        Graph to be used.
123
    eprop : :class:`~graph_tool.PropertyMap`
124
125
126
127
128
129
130
131
132
133
134
135
        Edge property to be used for the histogram.
    bins : list of bins
        List of bins to be used for the histogram. The values given represent
        the edges of the bins (i,e, lower bounds). If the list contains only one
        value, this will be used to automatically create an appropriate bin
        range, with a constant lenght given by this value.
    float_count : bool (optional, default: True)
        If True, the counts in each histogram bin will be returned as floats. If
        False, they will be returned as integers.

    Returns
    -------
136
    counts : :class:`~numpy.ndarray`
137
        The bin counts.
138
    bins : :class:`~numpy.ndarray`
139
140
141
142
143
144
145
        The bin edges.

    See Also
    --------
    vertex_hist : Vertex histograms.
    vertex_average : Average of vertex properties, degrees.
    edge_average : Average of edge properties.
146
    distance_histogram : Shortest-distance histogram.
147
148
149
150
151
152
153
154
155
156

    Notes
    -----
    The algorithm runs in :math:`O(|E|)` time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy import arange
157
158
159
    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.random_graph(1000, lambda: (5, 5))
160
161
162
    >>> eprop = g.new_edge_property("double")
    >>> eprop.get_array()[:] = random(g.num_edges())
    >>> print gt.edge_hist(g, eprop, arange(0, 1, 0.1))
Tiago Peixoto's avatar
Tiago Peixoto committed
163
    [array([ 525.,  504.,  502.,  502.,  468.,  499.,  531.,  471.,  520.,  478.]), array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9])]
164
165
166

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
167
    ret = libgraph_tool_stats.\
168
          get_edge_histogram(g._Graph__graph, _prop("e", g, eprop), bins)
169
    return [array(ret[0], dtype="float64") if float_count else ret[0], ret[1]]
Tiago Peixoto's avatar
Tiago Peixoto committed
170

171
def vertex_average(g, deg):
172
173
174
175
176
    """
    Return the average of the given degree or vertex property.

    Parameters
    ----------
177
    g : :class:`~graph_tool.Graph`
178
        Graph to be used.
179
    deg : string or :class:`~graph_tool.PropertyMap`
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        Degree or property to be used for the histogram. It can be either "in",
        "out" or "total", for in-, out-, or total degree of the vertices. It can
        also be a vertex property map.

    Returns
    -------
    average : float
        The average of the given degree or property.
    std : float
        The standard deviation of the average.

    See Also
    --------
    vertex_hist : Vertex histograms.
    edge_hist : Edge histograms.
    edge_average : Average of edge properties.
196
    distance_histogram : Shortest-distance histogram.
197
198
199
200
201
202
203
204
205
206
207

    Notes
    -----
    The algorithm runs in :math:`O(|V|)` time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, seed
    >>> seed(42)
208
    >>> g = gt.random_graph(1000, lambda: (poisson(5), poisson(5)))
209
    >>> print gt.vertex_average(g, "in")
Tiago Peixoto's avatar
Tiago Peixoto committed
210
    (5.0919999999999996, 0.071885575743677543)
211
212
    """

213
214
215
216
217
    ret = libgraph_tool_stats.\
          get_vertex_average(g._Graph__graph, _degree(g, deg))
    return ret

def edge_average(g, eprop):
218
219
220
221
222
    """
    Return the average of the given degree or vertex property.

    Parameters
    ----------
223
    g : :class:`~graph_tool.Graph`
224
        Graph to be used.
225
    eprop : :class:`~graph_tool.PropertyMap`
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        Edge property to be used for the histogram.

    Returns
    -------
    average : float
        The average of the given property.
    std : float
        The standard deviation of the average.

    See Also
    --------
    vertex_hist : Vertex histograms.
    edge_hist : Edge histograms.
    vertex_average : Average of vertex degree, properties.
240
    distance_histogram : Shortest-distance histogram.
241
242
243
244
245
246
247
248
249
250

    Notes
    -----
    The algorithm runs in :math:`O(|E|)` time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy import arange
251
252
253
    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.random_graph(1000, lambda: (5, 5))
254
255
256
    >>> eprop = g.new_edge_property("double")
    >>> eprop.get_array()[:] = random(g.num_edges())
    >>> print gt.edge_average(g, eprop)
Tiago Peixoto's avatar
Tiago Peixoto committed
257
    (0.49674035434130187, 0.0040946040690938677)
258
259
    """

260
261
262
263
    ret = libgraph_tool_stats.\
          get_edge_average(g._Graph__graph, _prop("e", g, eprop))
    return ret

264
def remove_labeled_edges(g, label):
265
    """Remove every edge `e` such that `label[e] != 0`."""
266
267
268
269
270
271
    g.stash_filter(all=False, directed=True, reversed=True)
    libgraph_tool_stats.\
          remove_labeled_edges(g._Graph__graph, _prop("e", g, label))
    g.pop_filter(all=False, directed=True, reversed=True)

def label_parallel_edges(g, eprop=None):
272
273
274
275
    r"""Label edges which are parallel, i.e, have the same source and target
    vertices. For each parallel edge set :math:`PE`, the labelling starts from 0
    to :math:`|PE|-1`. If the `eprop` parameter is given (a
    :class:`~graph_tool.PropertyMap`), the labelling is stored there."""
276
277
    if eprop == None:
        eprop = g.new_edge_property("int32_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
278
    libgraph_tool_stats.\
279
          label_parallel_edges(g._Graph__graph, _prop("e", g, eprop))
280
    return eprop
Tiago Peixoto's avatar
Tiago Peixoto committed
281

282
def remove_parallel_edges(g):
283
284
    """Remove all parallel edges from the graph. Only one edge from each
    parallel edge set is left."""
285
286
287
288
    eprop = label_parallel_edges(g)
    remove_labeled_edges(g, eprop)

def label_self_loops(g, eprop=None):
289
290
291
292
293
    """Label edges which are self-loops, i.e, the source and target vertices are
    the same. Self-loops are labeled with 1 and others with 0. If the `eprop`
    parameter is given (a :class:`~graph_tool.PropertyMap`), the labelling is
    stored there."""

294
295
    if eprop == None:
        eprop = g.new_edge_property("int32_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
296
    libgraph_tool_stats.\
297
          label_self_loops(g._Graph__graph, _prop("e", g, eprop))
298
    return eprop
299
300

def remove_self_loops(g):
301
    """Remove all self-loops edges from the graph."""
302
303
304
    eprop = label_self_loops(g)
    remove_labeled_edges(g, eprop)

305
306
307
308
def distance_histogram(g, weight=None, bins=[1], samples=None,
                       float_count=True):
    r"""
    Return the shortest-distance histogram for each vertex pair in the graph.
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    Parameters
    ----------
    g : :class:`Graph`
        Graph to be used.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge weights.
    bins : list (optional, default: [1])
        List of bins to be used for the histogram. The values given represent
        the edges of the bins (i,e, lower bounds). If the list contains only one
        value, this will be used to automatically create an appropriate bin
        range, with a constant length given by this value.
    samples : int (optional, default: None)
        If supplied, the distances will be randomly sampled from a number of
        source vertices given by this parameter. It `samples == None` (default),
        all pairs are used.
    float_count : bool (optional, default: True)
        If True, the counts in each histogram bin will be returned as floats. If
        False, they will be returned as integers.

    Returns
    -------
    counts : :class:`~numpy.ndarray`
        The bin counts.
    bins : :class:`~numpy.ndarray`
        The bin edges.

    See Also
    --------
    vertex_hist : Vertex histograms.
    edge_hist : Edge histograms.
    vertex_average : Average of vertex degree, properties.
    distance_histogram : Shortest-distance histogram.

    Notes
    -----
    The algorithm runs in :math:`O(V^2)` time, or :math:`O(V^2\log V)` if
    `weight != None`. If `samples` is supplied, the complexities are
    :math:`O(\text{samples}\times V)`  and
    :math:`O(\text{samples}\times V\log V)`, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> hist = gt.distance_histogram(g)
    >>> print hist
Tiago Peixoto's avatar
Tiago Peixoto committed
359
    [array([    0.,   300.,   857.,  2186.,  3894.,  2511.,   152.]), array([0, 1, 2, 3, 4, 5, 6], dtype=uint64)]
360
361
    >>> hist = gt.distance_histogram(g, samples=10)
    >>> print hist
Tiago Peixoto's avatar
Tiago Peixoto committed
362
    [array([   0.,   30.,   88.,  222.,  384.,  251.,   15.]), array([0, 1, 2, 3, 4, 5, 6], dtype=uint64)]
363
364
    """
    if samples != None:
365
        seed = numpy.random.randint(0, sys.maxint)
366
367
368
369
370
371
372
        ret = libgraph_tool_stats.\
              sampled_distance_histogram(g._Graph__graph,
                                         _prop("e", g, weight), bins,
                                         samples, seed)
    else:
        ret = libgraph_tool_stats.\
              distance_histogram(g._Graph__graph, _prop("e", g, weight), bins)
373
    return [array(ret[0], dtype="float64") if float_count else ret[0], ret[1]]