__init__.py 25.4 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
6
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@forked.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.generation`` - Random graph generation
23
---------------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35

Summary
+++++++

.. autosummary::
   :nosignatures:

   random_graph
   random_rewire
   predecessor_tree
   line_graph
   graph_union
36
   triangulation
37
38
39

Contents
++++++++
40
41
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
42
43
from .. dl_import import dl_import
dl_import("import libgraph_tool_generation")
44

45
from .. core import Graph, _check_prop_scalar, _prop, _limit_args
Tiago Peixoto's avatar
Tiago Peixoto committed
46
from .. stats import label_parallel_edges, label_self_loops
47
import sys, numpy, numpy.random
48

Tiago Peixoto's avatar
Tiago Peixoto committed
49
__all__ = ["random_graph", "random_rewire", "predecessor_tree", "line_graph",
50
           "graph_union", "triangulation"]
51
52

def random_graph(N, deg_sampler, deg_corr=None, directed=True,
Tiago Peixoto's avatar
Tiago Peixoto committed
53
54
                 parallel_edges=False, self_loops=False, random=True,
                 verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    r"""
    Generate a random graph, with a given degree distribution and correlation.

    Parameters
    ----------
    N : int
        Number of vertices in the graph.
    deg_sampler : function
        A degree sampler function which is called without arguments, and returns
        a tuple of ints representing the in and out-degree of a given vertex (or
        a single int for undirected graphs, representing the out-degree). This
        function is called once per vertex, but may be called more times, if the
        degree sequence cannot be used to build a graph.
    deg_corr : function (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
69
        A function which gives the degree correlation of the graph. It should be
Tiago Peixoto's avatar
Tiago Peixoto committed
70
71
72
73
74
75
76
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph.
    directed : bool (optional, default: True)
        Whether the generated graph should be directed.
77
    parallel_edges : bool (optional, default: False)
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
80
        If True, parallel edges are allowed.
    self_loops : bool (optional, default: False)
        If True, self-loops are allowed.
Tiago Peixoto's avatar
Tiago Peixoto committed
81
82
    random : bool (optional, default: True)
        If True, the returned graph is randomized.
83
84
    verbose : bool (optional, default: False)
        If True, verbose information is displayed.
Tiago Peixoto's avatar
Tiago Peixoto committed
85
86
87

    Returns
    -------
88
    random_graph : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
89
90
91
92
93
94
95
96
        The generated graph.

    See Also
    --------
    random_rewire: in place graph shuffling

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
97
98
99
100
101
102
    The algorithm makes sure the degree sequence is graphical (i.e. realizable)
    and keeps re-sampling the degrees if is not. With a valid degree sequence,
    the edges are placed deterministically, and later the graph is shuffled with
    the :func:`~graph_tool.generation.random_rewire` function.

    The complexity is :math:`O(V+E)` if parallel edges are allowed, and
Tiago Peixoto's avatar
Tiago Peixoto committed
103
104
    :math:`O(V+E\log N_k)` if parallel edges are not allowed, where :math:`N_k <
    V` is the number of different degrees sampled (or in,out-degree pairs).
Tiago Peixoto's avatar
Tiago Peixoto committed
105

Tiago Peixoto's avatar
Tiago Peixoto committed
106
107
108
    References
    ----------
    [deg-sequence] http://en.wikipedia.org/wiki/Degree_%28graph_theory%29#Degree_sequence
Tiago Peixoto's avatar
Tiago Peixoto committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    Examples
    --------

    >>> from numpy.random import randint, random, seed, poisson
    >>> from pylab import *
    >>> seed(42)

    This is a degree sampler which uses rejection sampling to sample from the
    distribution :math:`P(k)\propto 1/k`, up to a maximum.

    >>> def sample_k(max):
    ...     accept = False
    ...     while not accept:
    ...         k = randint(1,max+1)
    ...         accept = random() < 1.0/k
    ...     return k
    ...

    The following generates a random undirected graph with degree distribution
    :math:`P(k)\propto 1/k` (with k_max=40) and an *assortative* degree
    correlation of the form:

    .. math::

        P(i,k) \propto \frac{1}{1+|i-k|}

    >>> g = gt.random_graph(1000, lambda: sample_k(40),
    ...                     lambda i,k: 1.0/(1+abs(i-k)), directed=False)
    >>> gt.scalar_assortativity(g, "out")
Tiago Peixoto's avatar
Tiago Peixoto committed
139
    (0.62318897995178757, 0.011431222500824638)
Tiago Peixoto's avatar
Tiago Peixoto committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    The following samples an in,out-degree pair from the joint distribution:

    .. math::

        p(j,k) = \frac{1}{2}\frac{e^{-m_1}m_1^j}{j!}\frac{e^{-m_1}m_1^k}{k!} +
                 \frac{1}{2}\frac{e^{-m_2}m_2^j}{j!}\frac{e^{-m_2}m_2^k}{k!}

    with :math:`m_1 = 4` and :math:`m_2 = 20`.

    >>> def deg_sample():
    ...    if random() > 0.5:
    ...        return poisson(4), poisson(4)
    ...    else:
    ...        return poisson(20), poisson(20)
    ...

    The following generates a random directed graph with this distribution, and
    plots the combined degree correlation.

    >>> g = gt.random_graph(20000, deg_sample)
    >>>
    >>> hist = gt.combined_corr_hist(g, "in", "out")
    >>> imshow(hist[0], interpolation="nearest")
    <...>
    >>> colorbar()
    <...>
167
    >>> xlabel("in-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
168
    <...>
169
    >>> ylabel("out-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    <...>
    >>> savefig("combined-deg-hist.png")

    .. figure:: combined-deg-hist.png
        :align: center

        Combined degree histogram.

    A correlated directed graph can be build as follows. Consider the following
    degree correlation:

    .. math::

         P(j',k'|j,k)=\frac{e^{-k}k^{j'}}{j'!}
         \frac{e^{-(20-j)}(20-j)^{k'}}{k'!}

    i.e., the in->out correlation is "disassortative", the out->in correlation
    is "assortative", and everything else is uncorrelated.
    We will use a flat degree distribution in the range [1,20).

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
    ...                                     lambda a,b: (p.pmf(a[0],b[1])*
    ...                                                  p.pmf(a[1],20-b[0])))

    Lets plot the average degree correlations to check.

197
198
199
200
    >>> figure(figsize=(6,3))
    <...>
    >>> axes([0.1,0.15,0.63,0.8])
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
201
    >>> corr = gt.avg_neighbour_corr(g, "in", "in")
202
203
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
    ...         label=r"$\left<\text{in}\right>$ vs in")
Tiago Peixoto's avatar
Tiago Peixoto committed
204
205
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
206
207
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
    ...         label=r"$\left<\text{out}\right>$ vs in")
Tiago Peixoto's avatar
Tiago Peixoto committed
208
209
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
210
211
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
    ...          label=r"$\left<\text{in}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
212
213
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
214
215
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
    ...          label=r"$\left<\text{out}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
216
    (...)
217
    >>> legend(loc=(1.05,0.5))
Tiago Peixoto's avatar
Tiago Peixoto committed
218
219
220
221
222
223
224
225
226
227
228
229
    <...>
    >>> xlabel("source degree")
    <...>
    >>> ylabel("average target degree")
    <...>
    >>> savefig("deg-corr-dir.png")

    .. figure:: deg-corr-dir.png
        :align: center

        Average nearest neighbour correlations.
    """
230
    seed = numpy.random.randint(0, sys.maxint)
231
232
233
234
235
    g = Graph()
    if deg_corr == None:
        uncorrelated = True
    else:
        uncorrelated = False
236
237
    libgraph_tool_generation.gen_random_graph(g._Graph__graph, N, deg_sampler,
                                              uncorrelated, not parallel_edges,
238
239
240
                                              not self_loops, not directed,
                                              seed, verbose)
    g.set_directed(directed)
Tiago Peixoto's avatar
Tiago Peixoto committed
241
242
    if random:
        random_rewire(g, parallel_edges = parallel_edges,
243
                      self_loops = self_loops, verbose = verbose)
Tiago Peixoto's avatar
Tiago Peixoto committed
244
245
246
247
        if deg_corr != None:
            random_rewire(g, strat = "probabilistic",
                          parallel_edges = parallel_edges, deg_corr = deg_corr,
                          self_loops = self_loops, verbose = verbose)
248
    return g
249

250
@_limit_args({"strat":["erdos", "correlated", "uncorrelated", "probabilistic"]})
251
def random_rewire(g, strat= "uncorrelated", parallel_edges = False,
252
                  self_loops = False, deg_corr = None, verbose = False):
253
    r"""
254
255
    Shuffle the graph in-place. If `strat` != "erdos", the degrees (either in or
    out) of each vertex are always the same, but otherwise the edges are
256
    randomly placed. If `strat` = "correlated", the degree correlations are
257
    also maintained: The new source and target of each edge both have the same
Tiago Peixoto's avatar
Tiago Peixoto committed
258
259
    in and out-degree. If `strat` = "probabilistic", than edges are rewired
    according to the degree correlation given by the parameter `deg_corr`.
260
261
262

    Parameters
    ----------
263
    g : :class:`~graph_tool.Graph`
264
265
        Graph to be shuffled. The graph will be modified.
    strat : string (optional, default: "uncorrelated")
Tiago Peixoto's avatar
Tiago Peixoto committed
266
267
268
        If `strat` = "erdos", the resulting graph will be entirely random. If
        `strat` = "uncorrelated" only the degrees of the vertices will be
        maintained, nothing else. If `strat` = "correlated", additionally the
269
        new source and target of each edge both have the same in and out-degree.
Tiago Peixoto's avatar
Tiago Peixoto committed
270
        If `strat` = "probabilistic", than edges are rewired according to the
271
        degree correlation given by the parameter `deg_corr`.
272
273
274
275
    parallel : bool (optional, default: False)
        If True, parallel edges are allowed.
    self_loops : bool (optional, default: False)
        If True, self-loops are allowed.
276
277
278
279
280
281
282
283
284
285
    deg_corr : function (optional, default: None)
        A function which gives the degree correlation of the graph. It should be
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph. This parameter is ignored,
        unless `strat` = "probabilistic".
    verbose : bool (optional, default: False)
        If True, verbose information is displayed.
286
287
288
289
290
291
292

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
293
294
295
296
297
298
299
300
301
    This algorithm iterates through all the edges in the network and tries to
    swap its target our edge with another edge.

    .. note::
        If `parallel_edges` = False, parallel edges are not placed during
        rewiring. In this case, for some special graphs it may be necessary to
        call the function more than once to obtain a graph which corresponds to
        a uniform sample from the ensemble. But typically, if the graph is
        sufficiently large, a single call should be enough.
302
303

    Each edge gets swapped at least once, so the overall complexity is
Tiago Peixoto's avatar
Tiago Peixoto committed
304
305
306
307
    :math:`O(E)`. If `strat` = "probabilistic" the complexity is
    :math:`O(E\log N_k)`,  where :math:`N_k < V` is the number of different
    degrees (or in,out-degree pairs).

308
309
310
311
312
313

    Examples
    --------

    Some small graphs for visualization.

314
    >>> from numpy.random import random, seed
315
316
    >>> from pylab import *
    >>> seed(42)
317
    >>> g, pos = gt.triangulation(random((1000,2)))
318
    >>> gt.graph_draw(g, layout="arf", output="rewire_orig.png", size=(6,6))
319
    <...>
320
    >>> gt.random_rewire(g, "correlated")
321
    >>> gt.graph_draw(g, layout="arf", output="rewire_corr.png", size=(6,6))
322
    <...>
323
    >>> gt.random_rewire(g)
324
    >>> gt.graph_draw(g, layout="arf", output="rewire_uncorr.png", size=(6,6))
325
    <...>
326
327
328
    >>> gt.random_rewire(g, "erdos")
    >>> gt.graph_draw(g, layout="arf", output="rewire_erdos.png", size=(6,6))
    <...>
329

330
    Some `ridiculograms <http://www.youtube.com/watch?v=YS-asmU3p_4>`_ :
331

332
333
334
    .. image:: rewire_orig.png
    .. image:: rewire_corr.png
    .. image:: rewire_uncorr.png
335
    .. image:: rewire_erdos.png
336

337
338
339
    *From left to right:* Original graph; Shuffled graph, with degree
    correlations; Shuffled graph, without degree correlations; Shuffled graph,
    with random degrees.
340
341
342

    We can try some larger graphs to get better statistics.

343
344
    >>> figure()
    <...>
345
    >>> g = gt.random_graph(30000, lambda: sample_k(20),
346
347
    ...                     lambda i,j: exp(abs(i-j)), directed=False)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
348
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-", label="original")
349
350
351
    (...)
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
352
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="*", label="correlated")
353
354
355
    (...)
    >>> gt.random_rewire(g)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
356
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-", label="uncorrelated")
357
    (...)
358
359
360
361
    >>> gt.random_rewire(g, "erdos")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-", label="Erdos")
    (...)
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    >>> xlabel("$k$")
    <...>
    >>> ylabel(r"$\left<k_{nn}\right>$")
    <...>
    >>> legend(loc="best")
    <...>
    >>> savefig("shuffled-stats.png")

    .. figure:: shuffled-stats.png
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        graphs. The shuffled graph with correlations displays exactly the same
        correlation as the original graph.

    Now let's do it for a directed graph. See
    :func:`~graph_tool.generation.random_graph` for more details.

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
Tiago Peixoto's avatar
Tiago Peixoto committed
382
    ...                     lambda a,b: (p.pmf(a[0],b[1])*p.pmf(a[1],20-b[0])))
383
384
385
386
    >>> figure(figsize=(6,3))
    <...>
    >>> axes([0.1,0.15,0.6,0.8])
    <...>
387
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
388
389
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
    ...          label=r"$\left<\text{o}\right>$ vs i")
390
391
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
392
393
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
    ...          label=r"$\left<\text{i}\right>$ vs o")
394
395
396
397
    (...)
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
398
    ...          label=r"$\left<\text{o}\right>$ vs i, corr.")
399
400
401
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
402
    ...          label=r"$\left<\text{i}\right>$ vs o, corr.")
403
404
405
406
    (...)
    >>> gt.random_rewire(g, "uncorrelated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
407
    ...          label=r"$\left<\text{o}\right>$ vs i, uncorr.")
408
409
410
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
    >>> errorbar(corr[2], corr[0], yerr=corr[1], fmt="o-",
411
    ...          label=r"$\left<\text{i}\right>$ vs o, uncorr.")
412
    (...)
413
    >>> legend(loc=(1.05,0.45))
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    <...>
    >>> xlabel("source degree")
    <...>
    >>> ylabel("average target degree")
    <...>
    >>> savefig("shuffled-deg-corr-dir.png")

    .. figure:: shuffled-deg-corr-dir.png
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        directed graphs. The shuffled graph with correlations displays exactly
        the same correlation as the original graph.
    """

429
    seed = numpy.random.randint(0, sys.maxint)
430

Tiago Peixoto's avatar
Tiago Peixoto committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    if not parallel_edges:
        p = label_parallel_edges(g)
        if p.a.max() != 0:
            raise ValueError("Parallel edge detected. Can't rewire " +
                             "graph without parallel edges if it " +
                             "already contains parallel edges!")
    if not self_loops:
        l = label_self_loops(g)
        if l.a.max() != 0:
            raise ValueError("Self-loop detected. Can't rewire graph " +
                             "without self-loops if it already contains" +
                             " self-loops!")

    if deg_corr != None and  not g.is_directed():
        corr = lambda i,j: deg_corr(i[1], j[1])
446
447
448
    else:
        corr = deg_corr

Tiago Peixoto's avatar
Tiago Peixoto committed
449
450
    if corr == None:
        g.stash_filter(reversed=True)
451
452
    try:
        libgraph_tool_generation.random_rewire(g._Graph__graph, strat,
453
454
                                               self_loops, parallel_edges,
                                               corr, seed, verbose)
455
    finally:
Tiago Peixoto's avatar
Tiago Peixoto committed
456
457
        if corr == None:
            g.pop_filter(reversed=True)
Tiago Peixoto's avatar
Tiago Peixoto committed
458
459
460
461
462
463
464
465
466
467
468

def predecessor_tree(g, pred_map):
    """Return a graph from a list of predecessors given by
    the 'pred_map' vertex property."""

    _check_prop_scalar(pred_map, "pred_map")
    pg = Graph()
    libgraph_tool_generation.predecessor_graph(g._Graph__graph,
                                               pg._Graph__graph,
                                               _prop("v", g, pred_map))
    return pg
469
470

def line_graph(g):
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    """Return the line graph of the given graph `g`.

    Notes
    -----
    Given an undirected graph G, its line graph L(G) is a graph such that

        * each vertex of L(G) represents an edge of G; and
        * two vertices of L(G) are adjacent if and only if their corresponding
          edges share a common endpoint ("are adjacent") in G.

    For a directed graph, the second criterion becomes:

       * Two vertices representing directed edges from u to v and from w to x in
         G are connected by an edge from uv to wx in the line digraph when v =
         w.

    References
    ----------
    .. [line-wiki] http://en.wikipedia.org/wiki/Line_graph
    """
491
492
493
494
495
496
497
498
    lg = Graph(directed=g.is_directed())

    vertex_map = lg.new_vertex_property("int64_t")

    libgraph_tool_generation.line_graph(g._Graph__graph,
                                        lg._Graph__graph,
                                        _prop("v", lg, vertex_map))
    return lg, vertex_map
Tiago Peixoto's avatar
Tiago Peixoto committed
499
500

def graph_union(g1, g2, props=[], include=False):
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    """Return the union of graphs g1 and g2, composed of all edges and vertices
    of g1 and g2, without overlap.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
       First graph in the union.
    g2 : :class:`~graph_tool.Graph`
       Second graph in the union.
    props : list of tuples of :class:`~graph_tool.PropertyMap` (optional, default: [])
       Each element in this list must be a tuple of two PropertyMap objects. The
       first element must be a property of `g1`, and the second of `g2`. The
       values of the property maps are propagated into the union graph, and
       returned.
    include : bool (optional, default: False)
       If true, graph `g2` is inserted into `g1` which is modified. If false, a
       new graph is created, and both graphs remain unmodified.

    Returns
    -------
    ug : :class:`~graph_tool.Graph`
        The union graph
    props : list of :class:`~graph_tool.PropertyMap` objects
        List of propagated properties.  This is only returned if `props` is not
        empty.
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

    Examples
    --------

    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.triangulation(random((300,2)))[0]
    >>> ug = gt.graph_union(g, g)
    >>> uug = gt.graph_union(g, ug)
    >>> gt.graph_draw(g, layout="arf", size=(8,8), output="graph_original.png")
    <...>
    >>> gt.graph_draw(ug, layout="arf", size=(8,8), output="graph_union.png")
    <...>
    >>> gt.graph_draw(uug, layout="arf", size=(8,8), output="graph_union2.png")
    <...>

    .. image:: graph_original.png
    .. image:: graph_union.png
    .. image:: graph_union2.png

546
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    if not include:
        g1 = Graph(g1)
    g1.stash_filter(directed=True)
    g1.set_directed(True)
    g2.stash_filter(directed=True)
    g2.set_directed(True)
    n_props = []

    try:
        vmap, emap = libgraph_tool_generation.graph_union(g1._Graph__graph,
                                                          g2._Graph__graph)
        for p in props:
            p1, p2 = p
            if not include:
                p1 = g1.copy_property(p1)
            if p2.value_type() != p1.value_type():
                p2 = g2.copy_property(p2, value_type=p1.value_type())
            if p1.key_type() == 'v':
                libgraph_tool_generation.\
                      vertex_property_union(g1._Graph__graph, g2._Graph__graph,
                                            vmap, emap,
                                            _prop(p1.key_type(), g1, p1),
                                            _prop(p2.key_type(), g2, p2))
            else:
                libgraph_tool_generation.\
                      edge_property_union(g1._Graph__graph, g2._Graph__graph,
                                          vmap, emap,
                                          _prop(p1.key_type(), g1, p1),
                                          _prop(p2.key_type(), g2, p2))
            n_props.append(p1)
    finally:
        g1.pop_filter(directed=True)
        g2.pop_filter(directed=True)

    if len(n_props) > 0:
        return g1, n_props
    else:
        return g1
585
586

@_limit_args({"type":["simple", "delaunay"]})
587
def triangulation(points, type="simple", periodic=False):
588
589
590
591
592
593
594
595
596
597
    r"""
    Generate a 2D or 3D triangulation graph from a given point set.

    Parameters
    ----------
    points : :class:`~numpy.ndarray`
        Point set for the triangulation. It may be either a N x d array, where N
        is the number of points, and d is the space dimension (either 2 or 3).
    type : string (optional, default: 'simple')
        Type of triangulation. May be either 'simple' or 'delaunay'.
598
599
600
    periodic : bool (optional, default: False)
        If True, periodic boundary conditions will be used. This is parameter is
        valid only for type="delaunay", and is otherwise ignored.
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

    Returns
    -------
    triangulation_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        Vertex property map with the Cartesian coordinates.

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----

Tiago Peixoto's avatar
Tiago Peixoto committed
616
    A triangulation [cgal-triang]_ is a division of the convex hull of a point
617
    set into triangles, using only that set as triangle vertices.
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

    In simple triangulations (`type="simple"`), the insertion of a point is done
    by locating a face that contains the point, and splitting this face into
    three new faces (the order of insertion is therefore important). If the
    point falls outside the convex hull, the triangulation is restored by
    flips. Apart from the location, insertion takes a time O(1). This bound is
    only an amortized bound for points located outside the convex hull.

    Delaunay triangulations (`type="delaunay"`) have the specific empty sphere
    property, that is, the circumscribing sphere of each cell of such a
    triangulation does not contain any other vertex of the triangulation in its
    interior. These triangulations are uniquely defined except in degenerate
    cases where five points are co-spherical. Note however that the CGAL
    implementation computes a unique triangulation even in these cases.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
637
    >>> points = random((500,2))*4
638
    >>> g, pos = gt.triangulation(points)
639
640
641
642
643
644
645
646
647
    >>> weight = g.new_edge_property("double") # Edge weights corresponding to
    ...                                        # Euclidean distances
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 100
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), vsize=0.07, vcolor=b[0],
    ...               eprops={"penwidth":b[1]}, output="triang.png")
648
649
    <...>
    >>> g, pos = gt.triangulation(points, type="delaunay")
650
651
652
653
654
655
656
657
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 120
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), vsize=0.07, vcolor=b[0],
    ...               eprops={"penwidth":b[1]}, output="triang-delaunay.png")
658
659
660
661
662
663
664
    <...>

    2D triangulation of random points:

    .. image:: triang.png
    .. image:: triang-delaunay.png

665
666
667
    *Left:* Simple triangulation. *Right:* Delaunay triangulation. The vertex
    colors and the edge thickness correspond to the weighted betweenness
    centrality.
668
669
670

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
671
    .. [cgal-triang] http://www.cgal.org/Manual/last/doc_html/cgal_manual/Triangulation_3/Chapter_main.html
672
673
674
675
676
677
678
679
680
681
682
683
684
685

    """

    if points.shape[1] not in [2,3]:
        raise ValueError("points array must have shape N x d, with d either 2 or 3.")
    # copy points to ensure continuity and correct data type
    points = numpy.array(points, dtype='float64')
    if points.shape[1] == 2:
        npoints = numpy.zeros((points.shape[0], 3))
        npoints[:,:2] = points
        points = npoints
    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    libgraph_tool_generation.triangulation(g._Graph__graph, points,
686
                                           _prop("v", g, pos), type, periodic)
687
688
    return g, pos