__init__.py 19.8 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4 5 6
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@forked.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24 25

This module includes centrality-related algorithms.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
   eigentrust
   absolute_trust

Contents
++++++++
41 42
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
43 44 45 46
from .. dl_import import dl_import
dl_import("import libgraph_tool_centrality")

from .. core import _prop
47
import sys, numpy
Tiago Peixoto's avatar
Tiago Peixoto committed
48 49 50 51

__all__ = ["pagerank", "betweenness", "central_point_dominance", "eigentrust",
           "absolute_trust"]

52
def pagerank(g, damping=0.8, prop=None, epslon=1e-6, max_iter=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
53
             ret_iter=False):
54 55 56 57 58
    r"""
    Calculate the PageRank of each vertex.

    Parameters
    ----------
59
    g : :class:`~graph_tool.Graph`
60 61 62
        Graph to be used.
    damping : float, optional (default: 0.8)
        Damping factor.
63
    prop : :class:`~graph_tool.PropertyMap`, optional (default: None)
64 65 66 67 68 69 70 71 72 73 74
        Vertex property map to store the PageRank values.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
75 76
    pagerank : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the PageRank values.
77 78 79 80 81 82 83 84 85

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
    absolute_trust: absolute trust centrality

    Notes
    -----
86
    The value of PageRank [pagerank-wikipedia]_ of vertex v :math:`PR(v)` is
87 88 89
    given interactively by the relation:

    .. math::
90 91

        PR(v) = \frac{1-d}{N} + d \sum_{w \in \Gamma^{-}(v)}
92
                \frac{PR (w)}{d^{+}(w)}
93 94 95 96 97 98 99 100 101 102 103 104

    where :math:`\Gamma^{-}(v)` are the in-neighbours of v, :math:`d^{+}(w)` is
    the out-degree of w, and d is a damping factor.

    The implemented algorithm progressively iterates the above condition, until
    it no longer changes, according to the parameter epslon. It has a
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
105 106
    >>> from numpy.random import poisson, seed
    >>> seed(42)
107
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
108
    >>> pr = gt.pagerank(g)
109
    >>> print pr.a
Tiago Peixoto's avatar
Tiago Peixoto committed
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    [ 0.63876901  1.13528868  0.31465963  0.55855277  0.2         0.75605741
      0.42628689  0.53066254  0.55004112  0.91717076  0.71164749  0.32015438
      0.67275227  1.08207389  1.14412231  0.9049167   1.32002     1.4692142
      0.76549771  0.71510277  0.23732927  0.40844911  0.2         0.27912876
      0.71309781  0.32015438  1.3376236   0.31352887  0.59346569  0.33381039
      0.67300081  0.73318264  0.65812653  0.73409673  0.93051993  0.83241145
      1.59816568  0.43979363  0.2512247   1.15663357  0.2         0.35977148
      0.72182022  1.01267711  0.76304859  0.49247376  0.49384283  1.8436647
      0.64312224  1.00778243  0.62287633  1.15215387  0.56176895  0.7166227
      0.56506109  0.67104337  0.95570565  0.27996953  0.79975983  0.33631497
      1.09471419  0.33631497  0.2512247   2.09126732  0.68157485  0.2
      0.37140185  0.65619459  1.27370737  0.48383225  1.36125161  0.2
      0.78300573  1.03427279  0.56904755  1.66077917  1.73302035  0.28749261
      0.83143045  1.04969728  0.70090048  0.55991433  0.68440994  0.2
      0.34018009  0.45485484  0.28        1.2015438   2.11850885  1.24990775
      0.59914308  0.59989185  0.73535564  0.78168417  0.55390281  0.38627667
      1.42274704  0.51105348  0.92550979  1.27968065]
127 128 129

    References
    ----------
130 131
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
132
       "The pagerank citation ranking: Bringing order to the web", Technical
133 134 135 136 137
       report, Stanford University, 1998
    """

    if max_iter == None:
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
138 139 140 141 142 143 144 145 146 147
    if prop == None:
        prop = g.new_vertex_property("double")
    ic = libgraph_tool_centrality.\
            get_pagerank(g._Graph__graph, _prop("v", g, prop), damping, epslon,
                         max_iter)
    if ret_iter:
        return prop, ic
    else:
        return prop

148 149 150 151 152 153
def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
    r"""
    Calculate the betweenness centrality for each vertex and edge.

    Parameters
    ----------
154
    g : :class:`~graph_tool.Graph`
155
        Graph to be used.
156
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
157
        Vertex property map to store the vertex betweenness values.
158
    eprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
159
        Edge property map to store the edge betweenness values.
160
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
161 162 163 164 165 166
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
167 168 169 170
    vertex_betweenness : A vertex property map with the vertex betweenness
                         values.
    edge_betweenness : An edge property map with the edge betweenness
                       values.
171 172 173 174 175 176 177 178 179 180 181 182

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
    absolute_trust: absolute trust centrality

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

183 184
    .. math::

185 186 187 188 189 190 191 192 193
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

    where :math:`\sigma_{st}` is the number of shortest geodesic paths from s to
    t, and :math:`\sigma_{st}(v)` is the number of shortest geodesic paths from
    s to t that pass through a vertex v.  This may be normalised by dividing
    through the number of pairs of vertices not including v, which is
    :math:`(n-1)(n-2)/2`.

194
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
195 196 197 198 199 200 201
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE + V(V+E)
    \log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
202 203
    >>> from numpy.random import poisson, seed
    >>> seed(42)
204
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
205
    >>> vb, eb = gt.betweenness(g)
206
    >>> print vb.a
Tiago Peixoto's avatar
Tiago Peixoto committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    [ 0.03395047  0.07911989  0.00702948  0.02337119  0.          0.02930099
      0.01684377  0.02558675  0.03440095  0.02886187  0.03124262  0.00975953
      0.01307953  0.03938858  0.07266505  0.01313647  0.          0.06450598
      0.0575418   0.00525468  0.00466089  0.01803829  0.          0.00050161
      0.0085034   0.02362432  0.05620574  0.00097157  0.04006816  0.01301474
      0.02154916  0.          0.06009194  0.02780363  0.08963522  0.04049657
      0.06993559  0.02082698  0.00288318  0.03264322  0.          0.03641759
      0.01083859  0.03750864  0.04079359  0.02092599  0.          0.02153655
      0.          0.05674631  0.03861911  0.05473282  0.00904367  0.03249097
      0.00894043  0.0192741   0.03379204  0.02125998  0.0018321   0.0013495
      0.0336502   0.0210088   0.00125318  0.0489189   0.05254974  0.
      0.00432189  0.04866168  0.06444727  0.02508525  0.02533085  0.
      0.05308703  0.02539854  0.02270809  0.044889    0.04766016  0.0086368
      0.01501699  0.          0.03107868  0.0054221   0.          0.
      0.00596081  0.01183977  0.00159761  0.11435876  0.03988501  0.05128991
      0.04558135  0.02303469  0.05092032  0.04700221  0.00927644  0.00841903
      0.          0.03243633  0.04514374  0.05170213]
224 225 226

    References
    ----------
227 228
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
229 230
       centrality",  Journal of Mathematical Sociology, 2001
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
231 232 233 234 235 236 237 238 239 240 241 242 243 244
    if vprop == None:
        vprop = g.new_vertex_property("double")
    if eprop == None:
        eprop = g.new_edge_property("double")
    if weight != None and weight.value_type() != eprop.value_type():
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
    libgraph_tool_centrality.\
            get_betweenness(g._Graph__graph, _prop("e", g, weight),
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

def central_point_dominance(g, betweenness):
245 246 247 248 249 250
    r"""
    Calculate the central point dominance of the graph, given the betweenness
    centrality of each vertex.

    Parameters
    ----------
251
    g : :class:`~graph_tool.Graph`
252
        Graph to be used.
253
    betweenness : :class:`~graph_tool.PropertyMap`
254 255 256 257 258
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
259 260
    cp : float
        The central point dominance.
261 262 263 264 265 266 267 268

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
269
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
270 271
    as:

272 273
    .. math::

274 275 276 277 278 279 280 281 282
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
283 284
    >>> from numpy.random import poisson, seed
    >>> seed(42)
285
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
286 287
    >>> vb, eb = gt.betweenness(g)
    >>> print gt.central_point_dominance(g, vb)
Tiago Peixoto's avatar
Tiago Peixoto committed
288
    0.0884414811909
289 290 291

    References
    ----------
292
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
293 294 295
       Based on Betweenness", Sociometry, Vol. 40, No. 1,  pp. 35-41 (1977)
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
296
    return libgraph_tool_centrality.\
297
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
298 299
                                       _prop("v", g, betweenness))

300 301

def eigentrust(g, trust_map, vprop=None, norm=False, epslon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
302
               ret_iter=False):
303 304 305 306 307
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
308
    g : :class:`~graph_tool.Graph`
309
        Graph to be used.
310
    trust_map : :class:`~graph_tool.PropertyMap`
311
        Edge property map with the values of trust associated with each
312
        edge. The values must lie in the range [0,1].
313 314 315 316 317 318 319 320 321 322 323 324 325 326
    vprop : PropertyMap, optional (default: None)
        Vertex property map where the values of eigentrust must be stored.
    norm : bool, optional (default: false)
        Norm eigentrust values so that the total sum equals 1.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
327
    eigentrust : A vertex property map containing the eigentrust values.
328 329 330 331 332 333 334 335 336

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
    absolute_trust: absolute trust centrality

    Notes
    -----
337
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
338 339
    following limit

340 341
    .. math::

342 343 344 345 346
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

347 348
    .. math::

349 350 351 352 353 354 355 356 357 358
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
359
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
360 361
    >>> trust = g.new_edge_property("double")
    >>> trust.get_array()[:] = random(g.num_edges())*42
362
    >>> t = gt.eigentrust(g, trust, norm=True)
363
    >>> print t.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    [  5.51422638e-03   1.12397965e-02   2.34959294e-04   6.32738574e-03
       0.00000000e+00   6.34804836e-03   2.67885424e-03   4.02497751e-03
       1.67943467e-02   6.46196106e-03   1.92402451e-02   9.04032352e-04
       9.70843104e-03   1.40319816e-02   1.04995777e-02   2.86712231e-02
       2.47285894e-02   2.38394469e-02   7.06936059e-03   9.45794717e-03
       2.09970054e-05   1.64768298e-03   0.00000000e+00   1.19346706e-03
       6.88434371e-03   5.36337333e-03   2.08428677e-02   2.85813783e-03
       1.10564670e-02   3.16345060e-04   5.25737238e-03   5.43761445e-03
       7.98048389e-03   7.95939648e-03   2.23891858e-02   5.68630666e-03
       2.09300588e-02   4.28902068e-03   1.70833078e-03   2.37814042e-02
       0.00000000e+00   1.20805010e-03   1.29713483e-02   5.73021992e-03
       8.71093674e-03   7.77661067e-03   8.76489806e-04   2.38519385e-02
       3.53225723e-03   8.46948906e-03   5.09874234e-03   2.44547150e-02
       1.32342629e-02   1.80085559e-03   4.37189381e-03   1.18195253e-02
       1.62748861e-02   1.83200678e-04   1.09745025e-02   1.47544090e-03
       3.34512926e-02   1.58885132e-03   1.13128910e-03   3.04944830e-02
       4.22684975e-03   0.00000000e+00   9.89654274e-04   4.25927156e-03
       2.34516214e-02   4.91370905e-03   2.29366664e-02   0.00000000e+00
       6.83407601e-03   1.60508753e-02   1.62762068e-03   3.94324856e-02
       2.84109571e-02   8.81167727e-04   2.16999908e-02   1.28688125e-02
       1.10825963e-02   2.64915564e-03   2.88711928e-03   0.00000000e+00
       4.24392252e-03   9.38398819e-03   0.00000000e+00   1.74508371e-02
       3.26594153e-02   4.07188867e-02   3.20678152e-03   6.35046287e-03
       8.07061556e-03   5.08505374e-03   3.27300367e-03   3.30989070e-03
       2.30651195e-02   4.20338525e-03   5.04332662e-03   3.58731532e-02]
389 390 391

    References
    ----------
392
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
393 394 395 396 397
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
       Pages: 640 - 651, 2003
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
398 399
    if vprop == None:
        vprop = g.new_vertex_property("double")
400 401 402 403 404 405 406 407 408 409 410
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
                          _prop("v", g, vprop), epslon, max_iter)
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

411
def absolute_trust(g, trust_map, source, target = None, vprop=None):
412
    r"""
413 414
    Calculate the absolute trust centrality of each vertex in the graph, from a
    given source.
415 416 417

    Parameters
    ----------
418
    g : :class:`~graph_tool.Graph`
419
        Graph to be used.
420
    trust_map : :class:`~graph_tool.PropertyMap`
421 422
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
423
    source : Vertex
424
        Source vertex. All trust values are computed relative to this vertex.
425
    target : Vertex (optional, default: None)
426 427 428
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
429
        A vertex property map where the values of trust for each source
430
        must be stored.
431 432 433

    Returns
    -------
434
    absolute_trust : :class:`~graph_tool.PropertyMap` or float
435
        A vertex property map containing the absolute trust vector from the
436 437 438
        source vertex to the rest of the network. If `target` is specified, the
        result is a single float, with the corresponding trust value for the
        target.
439

440 441 442 443 444 445 446 447 448 449
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
    The absolute trust between vertices i and j is defined as

450 451
    .. math::

452 453
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
454

455 456 457
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
458

459 460
    .. math::

461
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
462

463 464 465 466 467 468
    The algorithm measures the absolute trust by finding the paths with maximum
    weight, using Dijkstra's algorithm, to all in-neighbours of a given
    target. This search needs to be performed repeatedly for every target, since
    it needs to be removed from the graph first. The resulting complexity is
    therefore :math:`O(N^2\log N)` for all targets, and :math:`O(N\log N)` for a
    single target.
469 470 471 472 473 474 475

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
476
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
477
    >>> trust = g.new_edge_property("double")
478
    >>> trust.a = random(g.num_edges())
479 480
    >>> t = gt.absolute_trust(g, trust, source=g.vertex(0))
    >>> print t.a
Tiago Peixoto's avatar
Tiago Peixoto committed
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    [ 0.16260667  0.04129912  0.13735376  0.19146125  0.          0.09147461
      0.10371912  0.12465511  0.24631221  0.0603916   0.2375385   0.06637879
      0.08897662  0.0800988   0.05250601  0.66759022  0.09368793  0.08275437
      0.13674709  0.15553915  0.01376162  0.417068    0.          0.06096886
      0.08746817  0.39380693  0.09215297  0.09575144  0.15594162  0.04008874
      0.05483972  0.05691086  0.13571077  0.32376012  0.22477937  0.06347962
      0.10445085  0.19447845  0.38007043  0.13810585  0.          0.08451096
      0.06648153  0.18479174  0.13003649  0.14850631  0.00320603  0.1074644
      0.12088162  0.06792678  0.08472666  0.2002143   0.25963204  0.37838425
      0.03089371  0.18389694  0.39420339  0.03348093  0.11483196  0.0656204
      0.14206403  0.07066434  0.25168986  0.07040126  0.04870569  0.
      0.09861349  0.03882069  0.1105267   0.07951823  0.08748441  0.
      0.08393443  0.11121719  0.21903223  0.25529628  0.0414386   0.03695558
      0.17664854  0.05143033  0.11735779  0.06525968  0.19600919  0.          0.1220922
      0.33330041  0.          0.28595961  0.14526678  0.12514885  0.089524
      0.40738962  0.03719195  0.54409979  0.06247424  0.10660136  0.11674385
      0.13218144  0.02214988  0.23215937]
498
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
499 500

    if vprop == None:
501
        vprop = g.new_vertex_property("double")
502

503
    source = g.vertex_index[source]
504

505 506 507 508
    if target == None:
        target = -1
    else:
        target = g.vertex_index[target]
509

510 511 512 513 514
    libgraph_tool_centrality.\
            get_absolute_trust(g._Graph__graph, source, target,
                               _prop("e", g, trust_map), _prop("v", g, vprop))
    if target != -1:
        return vprop.a[target]
515
    return vprop
Tiago Peixoto's avatar
Tiago Peixoto committed
516