cairo_draw.py 96.9 KB
Newer Older
1001
        the edge betweenness centrality.
1002
1003
1004

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
1005
1006
1007
1008
    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
1009
    props = _convert_props(props, "v", g, kwargs.get("vcmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1010
1011
    vprops.update(props)
    props, kwargs = parse_props("edge", kwargs)
1012
    props = _convert_props(props, "e", g, kwargs.get("ecmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1013
1014
1015
    eprops.update(props)

    if pos is None:
1016
        if (g.num_vertices() > 2 and output is None and
1017
1018
            not inline and kwargs.get("update_layout", True) and
            mplfig is None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
            L = np.sqrt(g.num_vertices())
            pos = random_layout(g, [L, L])
            if g.num_vertices() > 1000:
                if "multilevel" not in kwargs:
                    kwargs["multilevel"] = True
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos) / 10
        else:
            pos = sfdp_layout(g)
1028
1029
    else:
        _check_prop_vector(pos, name="pos", floating=True)
1030
        if output is None and not inline:
1031
1032
1033
1034
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos)
            if "update_layout" not in kwargs:
                kwargs["update_layout"] = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1035

1036
1037
1038
    if "pen_width" in eprops and "marker_size" not in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1039
            pw = pw.copy("double")
1040
            pw.fa *= 2.75
1041
1042
1043
            eprops["marker_size"] = pw
        else:
            eprops["marker_size"] = pw * 2.75
1044

1045
1046
1047
    if "text" in eprops and "text_distance" not in eprops and "pen_width" in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1048
            pw = pw.copy("double")
1049
            pw.fa *= 2
1050
1051
1052
1053
            eprops["text_distance"] = pw
        else:
            eprops["text_distance"] = pw * 2

1054
    if "text" in vprops and ("text_color" not in vprops or vprops["text_color"] == "auto"):
1055
        vcmap = kwargs.get("vcmap", matplotlib.cm.jet)
1056
1057
1058
1059
        bg = _convert(vertex_attrs.fill_color,
                      vprops.get("fill_color", _vdefaults["fill_color"]),
                      vcmap)
        bg_color = kwargs.get("bg_color", [1., 1., 1., 1.])
1060
1061
1062
1063
1064
        vprops["text_color"] = auto_colors(g, bg,
                                           vprops.get("text_position",
                                                      _vdefaults["text_position"]),
                                           bg_color)

1065
    if mplfig:
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        ax = None
        if isinstance(mplfig, matplotlib.figure.Figure):
            ctr = ax = mplfig.gca()
        elif isinstance(mplfig, matplotlib.axes.Axes):
            ctr = ax = mplfig
        else:
            ctr = mplfig

        artist = GraphArtist(g, pos, vprops, eprops, vorder, eorder, nodesfirst,
                             ax, **kwargs)
        ctr.artists.append(artist)

1078
1079
1080
1081
1082
1083
1084
1085
1086
        if fit_view != False and ax is not None:
            try:
                x, y, w, h = fit_view
            except TypeError:
                x, y = ungroup_vector_property(pos, [0, 1])
                l, r = x.a.min(), x.a.max()
                b, t = y.a.min(), y.a.max()
                w = r - l
                h = t - b
1087
1088
1089
            if fit_view != True:
                w *= float(fit_view)
                h *= float(fit_view)
1090
1091
1092
1093
            ax.set_xlim(l - w * .1, r + w * .1)
            ax.set_ylim(b - h * .1, t + h * .1)

        return pos
1094

1095
1096
    if inline:
        if fmt == "auto":
1097
1098
1099
1100
1101
            if output is None:
                fmt = "png"
            else:
                fmt = get_file_fmt(output)
        output_file = output
1102
1103
        output = io.BytesIO()

1104
    if output is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
1105
        return interactive_window(g, pos, vprops, eprops, vorder, eorder,
1106
                                  nodesfirst, geometry=output_size,
1107
                                  fit_view=fit_view, **kwargs)
Tiago Peixoto's avatar
Tiago Peixoto committed
1108
    else:
1109
        if isinstance(output, (str, unicode)):
1110
1111
1112
1113
1114
            out, auto_fmt = open_file(output, mode="wb")
        else:
            out = output
            if fmt == "auto":
                raise ValueError("File format must be specified.")
Tiago Peixoto's avatar
Tiago Peixoto committed
1115
1116

        if fmt == "auto":
1117
            fmt = auto_fmt
Tiago Peixoto's avatar
Tiago Peixoto committed
1118
1119
1120
1121
        if fmt == "pdf":
            srf = cairo.PDFSurface(out, output_size[0], output_size[1])
        elif fmt == "ps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
Tiago Peixoto's avatar
Tiago Peixoto committed
1122
1123
1124
        elif fmt == "eps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
            srf.set_eps(True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        elif fmt == "svg":
            srf = cairo.SVGSurface(out, output_size[0], output_size[1])
        elif fmt == "png":
            srf = cairo.ImageSurface(cairo.FORMAT_ARGB32, output_size[0],
                                     output_size[1])
        else:
            raise ValueError("Invalid format type: " + fmt)

        cr = cairo.Context(srf)

        adjust_default_sizes(g, output_size, vprops, eprops)
1136
1137
1138
        if fit_view != False:
            try:
                x, y, w, h = fit_view
1139
1140
                zoom = min(output_size[0] / w, output_size[1] / h)
                offset = (x * zoom, y * zoom)
1141
            except TypeError:
1142
                pad = fit_view if fit_view != True else 0.95
1143
1144
1145
1146
1147
1148
1149
                offset, zoom = fit_to_view(g, pos, output_size, vprops["size"],
                                           vprops["pen_width"], None,
                                           vprops.get("text", None),
                                           vprops.get("font_family",
                                                      _vdefaults["font_family"]),
                                           vprops.get("font_size",
                                                      _vdefaults["font_size"]),
1150
                                           pad, cr)
1151
            fit_view = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
        else:
            offset, zoom = [0, 0], 1

        if "bg_color" in kwargs:
            bg_color = kwargs["bg_color"]
            del  kwargs["bg_color"]
            cr.set_source_rgba(bg_color[0], bg_color[1],
                               bg_color[2], bg_color[3])
            cr.paint()
1161

Tiago Peixoto's avatar
Tiago Peixoto committed
1162
1163
1164
1165
        cr.translate(offset[0], offset[1])
        cr.scale(zoom, zoom)

        cairo_draw(g, pos, cr, vprops, eprops, vorder, eorder,
1166
                   nodesfirst, fit_view=fit_view, **kwargs)
1167

1168
        if fmt == "png":
Tiago Peixoto's avatar
Tiago Peixoto committed
1169
            srf.write_to_png(out)
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

        del cr

        if inline:
            img = None
            if fmt == "png":
                img = IPython.display.Image(data=out.getvalue())
            if fmt == "svg":
                img = IPython.display.SVG(data=out.getvalue())
            if img is None:
1180
1181
                inl_out = io.BytesIO()
                inl_srf = cairo.ImageSurface(cairo.FORMAT_ARGB32,
Pietro Battiston's avatar
Pietro Battiston committed
1182
1183
                                             output_size[0],
                                             output_size[1])
1184
1185
1186
1187
1188
1189
                inl_cr = cairo.Context(inl_srf)
                inl_cr.set_source_surface(srf, 0, 0)
                inl_cr.paint()
                inl_srf.write_to_png(inl_out)
                del inl_srf
                img = IPython.display.Image(data=inl_out.getvalue())
1190
            srf.finish()
1191
            if output_file is not None:
1192
                if isinstance(output_file, (str, unicode)):
1193
1194
1195
1196
                    ofile, auto_fmt = open_file(output_file, mode="wb")
                else:
                    ofile = output_file
                ofile.write(out.getvalue())
1197
                if isinstance(output_file, (str, unicode)):
1198
                    ofile.close()
1199
            IPython.display.display(img)
1200
        del srf
Tiago Peixoto's avatar
Tiago Peixoto committed
1201
        return pos
1202
1203
1204
1205
1206


def adjust_default_sizes(g, geometry, vprops, eprops, force=False):
    if "size" not in vprops or force:
        A = geometry[0] * geometry[1]
Tiago Peixoto's avatar
Tiago Peixoto committed
1207
1208
        N = max(g.num_vertices(), 1)
        vprops["size"] = np.sqrt(A / N) / 3.5
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

    if "pen_width" not in vprops or force:
        size = vprops["size"]
        if isinstance(vprops["size"], PropertyMap):
            size = vprops["size"].fa.mean()
        vprops["pen_width"] = size / 10
        if "pen_width" not in eprops or force:
            eprops["pen_width"] = size / 10
        if "marker_size" not in eprops or force:
            eprops["marker_size"] = size * 0.8


def scale_ink(scale, vprops, eprops):
    if "size" not in vprops:
        vprops["size"] = _vdefaults["size"]
    if "pen_width" not in vprops:
        vprops["pen_width"] = _vdefaults["pen_width"]
    if "font_size" not in vprops:
        vprops["font_size"] = _vdefaults["font_size"]
    if "pen_width" not in eprops:
        eprops["pen_width"] = _edefaults["pen_width"]
    if "marker_size" not in eprops:
        eprops["marker_size"] = _edefaults["marker_size"]
1232
1233
1234
1235
    if "font_size" not in eprops:
        eprops["font_size"] = _edefaults["font_size"]
    if "text_distance" not in eprops:
        eprops["text_distance"] = _edefaults["text_distance"]
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

    for props in [vprops, eprops]:
        if isinstance(props["pen_width"], PropertyMap):
            props["pen_width"].fa *= scale
        else:
            props["pen_width"] *= scale
    if isinstance(vprops["size"], PropertyMap):
        vprops["size"].fa *= scale
    else:
        vprops["size"] *= scale
    if isinstance(vprops["font_size"], PropertyMap):
        vprops["font_size"].fa *= scale
    else:
        vprops["font_size"] *= scale
    if isinstance(eprops["marker_size"], PropertyMap):
        eprops["marker_size"].fa *= scale
    else:
        eprops["marker_size"] *= scale
1254
1255
1256
1257
1258
1259
1260
1261
    if isinstance(eprops["font_size"], PropertyMap):
        eprops["font_size"].fa *= scale
    else:
        eprops["font_size"] *= scale
    if isinstance(eprops["text_distance"], PropertyMap):
        eprops["text_distance"].fa *= scale
    else:
        eprops["text_distance"] *= scale
1262
1263
1264

def get_bb(g, pos, size, pen_width, size_scale=1, text=None, font_family=None,
           font_size=None, cr=None):
1265
    size = size.fa if isinstance(size, PropertyMap) else size
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
    pen_width = pen_width.fa if isinstance(pen_width, PropertyMap) else pen_width
    pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
    if text is not None and text != "":
        if not isinstance(size, PropertyMap):
            uniform = (not isinstance(font_size, PropertyMap) and
                       not isinstance(font_family, PropertyMap))
            size = np.ones(len(pos_x.fa)) * size
        else:
            uniform = False
        for i, v in enumerate(g.vertices()):
            ff = font_family[v] if isinstance(font_family, PropertyMap) \
               else font_family
            cr.select_font_face(ff)
            fs = font_size[v] if isinstance(font_family, PropertyMap) \
               else font_size
1281
1282
            if not isinstance(font_size, PropertyMap):
                cr.set_font_size(fs)
1283
            t = text[v] if isinstance(text, PropertyMap) else text
1284
            if not isinstance(t, (str, unicode)):
1285
1286
1287
1288
1289
1290
1291
                t = str(t)
            extents = cr.text_extents(t)
            s = max(extents[2], extents[3]) * 1.4
            size[i] = max(size[i] * size_scale, s) / size_scale
            if uniform:
                size[:] = size[i]
                break
1292
    sl = label_self_loops(g)
1293
    slm = sl.fa.max() * 0.75 if g.num_edges() > 0 else 0
1294
    delta = (size * size_scale * (slm + 1)) / 2 + pen_width * 2
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
    x_range = [pos_x.fa.min(), pos_x.fa.max()]
    y_range = [pos_y.fa.min(), pos_y.fa.max()]
    x_delta = [x_range[0] - (pos_x.fa - delta).min(),
               (pos_x.fa + delta).max() - x_range[1]]
    y_delta = [y_range[0] - (pos_y.fa - delta).min(),
               (pos_y.fa + delta).max() - y_range[1]]
    return x_range, y_range, x_delta, y_delta


def fit_to_view(g, pos, geometry, size, pen_width, M=None, text=None,
1305
                font_family=None, font_size=None, pad=0.95, cr=None):
1306
1307
    if g.num_vertices() == 0:
        return [0, 0], 1
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    if M is not None:
        pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
        P = np.zeros((2, len(pos_x.fa)))
        P[0, :] = pos_x.fa
        P[1, :] = pos_y.fa
        T = np.zeros((2, 2))
        O = np.zeros(2)
        T[0, 0], T[1, 0], T[0, 1], T[1, 1], O[0], O[1] = M
        P = np.dot(T, P)
        P[0] += O[0]
        P[1] += O[1]
        pos_x.fa = P[0, :]
        pos_y.fa = P[1, :]
        pos = group_vector_property([pos_x, pos_y])
    x_range, y_range, x_delta, y_delta = get_bb(g, pos, size, pen_width,
                                                1, text, font_family,
                                                font_size, cr)
1325
1326
1327
1328
1329
1330
1331
1332
    dx = (x_range[1] - x_range[0])
    dy = (y_range[1] - y_range[0])
    if dx == 0:
        dx = 1
    if dy == 0:
        dy = 1
    zoom_x = (geometry[0] - sum(x_delta)) / dx
    zoom_y = (geometry[1] - sum(y_delta)) / dy
1333
1334
1335
1336
1337
    if np.isnan(zoom_x) or np.isinf(zoom_x) or zoom_x == 0:
        zoom_x = 1
    if np.isnan(zoom_y) or np.isinf(zoom_y) or zoom_y == 0:
        zoom_y = 1
    zoom = min(zoom_x, zoom_y) * pad
1338
1339
    empty_x = (geometry[0] - sum(x_delta)) - dx * zoom
    empty_y = (geometry[1] - sum(y_delta)) - dy * zoom
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    offset = [-x_range[0] * zoom + empty_x / 2 + x_delta[0],
              -y_range[0] * zoom + empty_y / 2 + y_delta[0]]
    return offset, zoom


def transform_scale(M, scale):
    p = M.transform_distance(scale / np.sqrt(2),
                             scale / np.sqrt(2))
    return np.sqrt(p[0] ** 2 + p[1] ** 2)

1350
1351
def get_hierarchy_control_points(g, t, tpos, beta=0.8, cts=None, is_tree=True,
                                 max_depth=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1352
    r"""Return the Bézier spline control points for the edges in ``g``, given the hierarchical structure encoded in graph `t`.
1353
1354
1355
1356
1357
1358
1359
1360
1361

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be drawn.
    t : :class:`~graph_tool.Graph`
        Directed graph containing the hierarchy of ``g``. It must be a directed
        tree with a single root. The direction of the edges point from the root
        to the leaves, and the vertices in ``t`` with index in the range
Tiago Peixoto's avatar
Tiago Peixoto committed
1362
        :math:`[0, N-1]`, with :math:`N` being the number of vertices in ``g``,
1363
1364
1365
1366
        must correspond to the respective vertex in ``g``.
    tpos : :class:`~graph_tool.PropertyMap`
        Vector-valued vertex property map containing the x and y coordinates of
        the vertices in graph ``t``.
1367
    beta : ``float`` (optional, default: ``0.8`` or :class:`~graph_tool.PropertyMap`)
1368
        Edge bundling strength. For ``beta == 0`` the edges are straight lines,
1369
1370
1371
        and for ``beta == 1`` they strictly follow the hierarchy. This can be
        optionally an edge property map, which specified a different bundling
        strength for each edge.
1372
1373
1374
    cts : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map of type ``vector<double>`` where the control points
        will be stored.
1375
1376
1377
    is_tree : ``bool`` (optional, default: ``True``)
        If ``True``, ``t`` must be a directed tree, otherwise it can be any
        connected graph.
1378
1379
1380
    max_depth : ``int`` (optional, default: ``None``)
        If supplied, only the first ``max_depth`` bottom levels of the hierarchy
        will be used.
1381

1382
1383
1384
1385

    Returns
    -------

1386
    cts : :class:`~graph_tool.PropertyMap`
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
        Vector-valued edge property map containing the Bézier spline control
        points for the edges in ``g``.

    Notes
    -----
    This is an implementation of the edge-bundling algorithm described in
    [holten-hierarchical-2006]_.


    Examples
    --------
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
    .. testsetup:: nested_cts

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: nested_cts

       >>> g = gt.collection.data["netscience"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g.purge_vertices()
1408
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
1409
       >>> t = gt.get_hierarchy_tree(state)[0]
1410
1411
1412
       >>> tpos = pos = gt.radial_tree_layout(t, t.vertex(t.num_vertices() - 1), weighted=True)
       >>> cts = gt.get_hierarchy_control_points(g, t, tpos)
       >>> pos = g.own_property(tpos)
1413
       >>> b = state.levels[0].b
Tiago Peixoto's avatar
Tiago Peixoto committed
1414
1415
1416
       >>> shape = b.copy()
       >>> shape.a %= 14
       >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts,
1417
1418
1419
1420
1421
       ...               edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.pdf")
       <...>

    .. testcleanup:: nested_cts

Tiago Peixoto's avatar
Tiago Peixoto committed
1422
       gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts, edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.png")
1423
1424
1425
1426
1427
1428
1429

    .. figure:: netscience_nested_mdl.*
       :align: center

       Block partition of a co-authorship network, which minimizes the description
       length of the network according to the nested (degree-corrected) stochastic blockmodel.

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440


    References
    ----------

    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

1441
1442
1443
1444
    if cts is None:
        cts = g.new_edge_property("vector<double>")
    if cts.value_type() != "vector<double>":
        raise ValueError("cts property map must be of type 'vector<double>' not '%s' " % cts.value_type())
1445
1446
1447
1448

    u = GraphView(g, directed=True)
    tu = GraphView(t, directed=True)

1449
1450
1451
1452
1453
    if not isinstance(beta, PropertyMap):
        beta = u.new_edge_property("double", beta)
    else:
        beta = beta.copy("double")

1454
1455
1456
    if max_depth is None:
        max_depth = t.num_vertices()

1457
    tu = GraphView(tu, skip_vfilt=True)
1458
    tpos = tu.own_property(tpos)
1459
1460
    libgraph_tool_draw.get_cts(u._Graph__graph,
                               tu._Graph__graph,
1461
1462
                               _prop("v", tu, tpos),
                               _prop("e", u, beta),
1463
                               _prop("e", u, cts),
1464
                               is_tree, max_depth)
1465
    return cts
1466
1467
1468
1469
1470
1471
1472

#
# The functions and classes below depend on GTK
# =============================================
#

try:
1473
1474
    import gi
    gi.require_version('Gtk', '3.0')
1475
    from gi.repository import Gtk, Gdk, GdkPixbuf
1476
    from gi.repository import GObject as gobject
1477
1478
    from .gtk_draw import *
except (ImportError, RuntimeError) as e:
1479
    msg = "Error importing Gtk module: %s; GTK+ drawing will not work." % str(e)
1480
    warnings.warn(msg, RuntimeWarning)
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

def gen_surface(name):
    fobj, fmt = open_file(name)
    if fmt in ["png", "PNG"]:
        sfc = cairo.ImageSurface.create_from_png(fobj)
        return sfc
    else:
        pixbuf = GdkPixbuf.Pixbuf.new_from_file(name)
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, pixbuf.get_width(),
                                     pixbuf.get_height())
        cr = cairo.Context(surface)
        Gdk.cairo_set_source_pixbuf(cr, pixbuf, 0, 0)
        cr.paint()
        return surface
1495
#
1496
1497
# matplotlib
# ==========
1498
#
1499

1500
1501
1502
1503
1504
1505
1506
class GraphArtist(matplotlib.artist.Artist):
    """:class:`matplotlib.artist.Artist` specialization that draws
       :class:`graph_tool.Graph` instances.

    .. warning::

        Only Cairo-based backends are supported.
1507
1508
1509
1510

    """

    def __init__(self, g, pos, vprops, eprops, vorder, eorder,
1511
                nodesfirst, ax=None, **kwargs):
1512
1513
1514
1515
1516
1517
1518
1519
        matplotlib.artist.Artist.__init__(self)
        self.g = g
        self.pos = pos
        self.vprops = vprops
        self.eprops = eprops
        self.vorder = vorder
        self.eorder = eorder
        self.nodesfirst = nodesfirst
1520
        self.ax = ax
1521
1522
1523
1524
1525
        self.kwargs = kwargs

    def draw(self, renderer):
        if not isinstance(renderer, matplotlib.backends.backend_cairo.RendererCairo):
            raise NotImplementedError("graph plotting is supported only on Cairo backends")
1526
1527

        ctx = renderer.gc.ctx
1528
1529
1530
1531

        if not isinstance(ctx, cairo.Context):
            ctx = _UNSAFE_cairocffi_context_to_pycairo(ctx)

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
        ctx.save()

        if self.ax is not None:
            m = self.ax.transData.get_affine().get_matrix()
            m = cairo.Matrix(m[0,0], m[1, 0], m[0, 1], m[1, 1], m[0, 2], m[1,2])
            ctx.set_matrix(m)

            l, r = self.ax.get_xlim()
            b, t = self.ax.get_ylim()
            ctx.rectangle(l, b, r-l, t-b)
            ctx.clip()

1544
1545
        # flip y direction
        x, y = ungroup_vector_property(self.pos, [0, 1])
1546
1547
        l, t, r, b = ctx.clip_extents()
        y.fa = b + t - y.fa
1548
        pos = group_vector_property([x, y])
1549

1550
        cairo_draw(self.g, pos, ctx, self.vprops, self.eprops,
1551
1552
1553
                   self.vorder, self.eorder, self.nodesfirst, self.kwargs)

        ctx.restore()
1554
1555
1556
1557
1558
1559
1560


#
# Drawing hierarchies
# ===================
#

1561
1562
def draw_hierarchy(state, pos=None, layout="radial", beta=0.8, node_weight=None,
                   vprops=None, eprops=None, hvprops=None, heprops=None,
1563
                   subsample_edges=None, rel_order="degree", deg_size=True,
1564
                   vsize_scale=1, hsize_scale=1, hshortcuts=0, hide=0,
1565
                   bip_aspect=1., empty_branches=False, **kwargs):
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
    r"""Draw a nested block model state in a circular hierarchy layout with edge
    bundling.

    Parameters
    ----------
    state : :class:`~graph_tool.community.NestedBlockState`
        Nested block state to be drawn.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If supplied, this specifies a vertex property map with the positions of
        the vertices in the layout.
    layout : ``str`` or :class:`~graph_tool.PropertyMap` (optional, default: ``"radial"``)
        If ``layout == "radial"`` :func:`~graph_tool.draw.radial_tree_layout`
        will be used. If ``layout == "sfdp"``, the hierarchy tree will be
1579
1580
        positioned using :func:`~graph_tool.draw.sfdp_layout`. If ``layout ==
        "bipartite"`` a bipartite layout will be used. If instead a
1581
1582
1583
1584
        :class:`~graph_tool.PropertyMap` is provided, it must correspond to the
        position of the hierarchy tree.
    beta : ``float`` (optional, default: ``.8``)
        Edge bundling strength.
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
    vprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties. Individual properties may also be
        given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    eprops : dict (optional, default: ``None``)
        Dictionary with the edge properties. Individual properties may also be
        given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hvprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties for the *hierarchy tree*.
        Individual properties may also be given via the ``hvertex_<prop-name>``
        parameters, where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
    heprops : dict (optional, default: ``None``)
        Dictionary with the edge properties for the *hierarchy tree*. Individual
        properties may also be given via the ``hedge_<prop-name>`` parameters,
        where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
1605
1606
1607
    subsample_edges : ``int`` or list of :class:`~graph_tool.Edge` instances (optional, default: ``None``)
        If provided, only this number of random edges will be drawn. If the
        value is a list, it should include the edges that are to be drawn.
1608
1609
1610
1611
1612
    rel_order : ``str`` or ``None`` or :class:`~graph_tool.PropertyMap` (optional, default: ``"degree"``)
        If ``degree``, the vertices will be ordered according to degree inside
        each group, and the relative ordering of the hierarchy branches. If
        instead a :class:`~graph_tool.PropertyMap` is provided, its value will
        be used for the relative ordering.
1613
1614
1615
    deg_size : ``bool`` (optional, default: ``True``)
        If ``True``, the (total) node degrees will be used for the default
        vertex sizes..
1616
    vsize_scale : ``float`` (optional, default: ``1.``)
1617
        Multiplicative factor for the default vertex sizes.
1618
    hsize_scale : ``float`` (optional, default: ``1.``)
1619
        Multiplicative factor for the default sizes of the hierarchy nodes.
1620
1621
1622
1623
1624
    hshortcuts : ``int`` (optional, default: ``0``)
        Include shortcuts to the number of upper layers in the hierarchy
        determined by this parameter.
    hide : ``int`` (optional, default: ``0``)
        Hide upper levels of the hierarchy.
1625
1626
    bip_aspect : ``float`` (optional, default: ``1.``)
        If ``layout == "bipartite"``, this will define the aspect ratio of layout.
1627
    empty_branches : ``bool`` (optional, default: ``False``)
1628
1629
        If ``empty_branches == False``, dangling branches at the upper layers
        will be pruned.
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
    vertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``vertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``vprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    edge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``edge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``eprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
    hvertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hvertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``hvprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hedge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hedge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``heprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
1648
    **kwargs :
1649
1650
        All remaining keyword arguments will be passed to the
        :func:`~graph_tool.draw.graph_draw` function.
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the vertices in the layout.
    t : :class:`~graph_tool.Graph`
        This is a the hierarchy tree used in the layout.
    tpos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the hierarchy tree in the layout.

    Examples
    --------
    .. testsetup:: draw_hierarchy

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: draw_hierarchy

       >>> g = gt.collection.data["celegansneural"]
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
       >>> gt.draw_hierarchy(state, output="celegansneural_nested_mdl.pdf")
       (...)

    .. testcleanup:: draw_hierarchy

       gt.draw_hierarchy(state, output="celegansneural_nested_mdl.png")

    .. figure:: celegansneural_nested_mdl.*
       :align: center

       Hierarchical block partition of the C. elegans neural network, which
       minimizes the description length of the network according to the nested
       (degree-corrected) stochastic blockmodel.


    References
    ----------
    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
1695

1696
1697
1698
1699
    """

    g = state.g

1700
1701
    overlap = state.levels[0].overlap
    if overlap:
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
        ostate = state.levels[0]
        bv, bcin, bcout, bc = ostate.get_overlap_blocks()
        be = ostate.get_edge_blocks()
        orig_state = state
        state = state.copy()
        b = ostate.get_majority_blocks()
        state.levels[0] = BlockState(g, b=b)
    else:
        b = state.levels[0].b

    if subsample_edges is not None:
        emask = g.new_edge_property("bool", False)
        if isinstance(subsample_edges, int):
            eidx = g.edge_index.copy("int").fa.copy()
            numpy.random.shuffle(eidx)
            emask = g.new_edge_property("bool")
            emask.a[eidx[:subsample_edges]] = True
        else:
            for e in subsample_edges:
                emask[e] = True
        g = GraphView(g, efilt=emask)

1724
1725
    t, tb, tvorder = get_hierarchy_tree(state,
                                        empty_branches=empty_branches)
1726
1727

    if layout == "radial":
1728
1729
1730
        if rel_order == "degree":
            rel_order = g.degree_property_map("total")
        vorder = t.own_property(rel_order.copy())
1731
1732
        if pos is not None:
            x, y = ungroup_vector_property(pos, [0, 1])
1733
1734
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
1735
            angle = g.new_vertex_property("double")
1736
            angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
1737
            vorder = angle
1738
1739
1740
        if node_weight is not None:
            node_weight = t.own_property(node_weight.copy())
            node_weight.a[node_weight.a == 0] = 1
1741
        tpos = radial_tree_layout(t, root=t.vertex(t.num_vertices() - 1,
1742
                                                   use_index=False),
1743
                                  node_weight=node_weight,
1744
1745
                                  rel_order=vorder,
                                  rel_order_leaf=True)
1746
    elif layout == "bipartite":
1747
        tpos = get_bip_hierachy_pos(state, aspect=bip_aspect,
1748
1749
                                    node_weight=node_weight)
        tpos = t.own_property(tpos)
1750
1751
1752
1753
1754
    elif layout == "sfdp":
        if pos is None:
            tpos = sfdp_layout(t)
        else:
            x, y = ungroup_vector_property(pos, [0, 1])
1755
1756
1757
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
            K = numpy.sqrt(x.fa.std() + y.fa.std()) / 10
1758
1759
            tpos = t.new_vertex_property("vector<double>")
            for v in t.vertices():
1760
                if int(v) < g.num_vertices(True):
1761
1762
1763
1764
                    tpos[v] = [x[v], y[v]]
                else:
                    tpos[v] = [0, 0]
            pin = t.new_vertex_property("bool")
1765
            pin.a[:g.num_vertices(True)] = True
1766
1767
1768
1769
            tpos = sfdp_layout(t, K=K, pos=tpos, pin=pin, multilevel=False)
    else:
        tpos = t.own_property(layout)

1770
1771
    hvvisible = t.new_vertex_property("bool", True)
    if hide > 0:
1772
        root = t.vertex(t.num_vertices(True) - 1)
1773
1774
1775
        dist = shortest_distance(t, source=root)
        hvvisible.fa = dist.fa >= hide

1776
1777
    pos = g.own_property(tpos.copy())

1778
    cts = get_hierarchy_control_points(g, t, tpos, beta,
1779
                                       max_depth=len(state.levels) - hshortcuts)
1780

1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
    vprops_orig = vprops
    eprops_orig = eprops
    hvprops_orig = vprops
    heprops_orig = eprops
    kwargs_orig = kwargs

    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
    vprops.update(props)
    vprops.setdefault("fill_color", b)
    vprops.setdefault("color", b)
1794
    vprops.setdefault("shape", _vdefaults["shape"] if not overlap else "pie")
1795
1796
    s = max(200 / numpy.sqrt(g.num_vertices()), 5)
    vprops.setdefault("size", prop_to_size(g.degree_property_map("total"), s/5, s))
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

    if vprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(g, pos, text_pos=True)
        vprops["text_position"] = text_pos
        vprops["text_rotation"] = angle

    self_loops = label_self_loops(g, mark_only=True)
    if self_loops.fa.max() > 0:
        parallel_distance = vprops.get("size", _vdefaults["size"])
        if isinstance(parallel_distance, PropertyMap):
            parallel_distance = parallel_distance.fa.mean()
        cts_p = position_parallel_edges(g, pos, numpy.nan,
                                        parallel_distance)
        gu = GraphView(g, efilt=self_loops)
        for e in gu.edges():
            cts[e] = cts_p[e]


1815
1816
1817
1818
1819
1820
1821
    vprops = _convert_props(vprops, "v", g, kwargs.get("vcmap", default_cm),
                            pmap_default=True)

    props, kwargs = parse_props("edge", kwargs)
    eprops.update(props)
    eprops.setdefault("control_points", cts)
    eprops.setdefault("pen_width", _edefaults["pen_width"])
1822
    eprops.setdefault("color", list(_edefaults["color"][:-1]) + [.6])
1823
    eprops.setdefault("end_marker", "arrow" if g.is_directed() else "none")
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
    eprops = _convert_props(eprops, "e", g, kwargs.get("ecmap", default_cm),
                            pmap_default=True)

    hvprops = hvprops.copy() if hvprops is not None else {}
    heprops = heprops.copy() if heprops is not None else {}

    props, kwargs = parse_props("hvertex", kwargs)
    hvprops.update(props)

    blue = list(color_converter.to_rgba("#729fcf"))
    blue[-1] = .6
    hvprops.setdefault("fill_color", blue)
    hvprops.setdefault("color", [1, 1, 1, 0])
    hvprops.setdefault("shape", "square")
    hvprops.setdefault("size", 10)

1840
1841
1842
1843
1844
    if hvprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(t, tpos, text_pos=True)
        hvprops["text_position"] = text_pos
        hvprops["text_rotation"] = angle

1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
    hvprops = _convert_props(hvprops, "v", t, kwargs.get("vcmap", default_cm),
                             pmap_default=True)

    props, kwargs = parse_props("hedge", kwargs)
    heprops.update(props)

    heprops.setdefault("color", blue)
    heprops.setdefault("end_marker", "arrow")
    heprops.setdefault("marker_size", 8.)
    heprops.setdefault("pen_width", 1.)

    heprops = _convert_props(heprops, "e", t, kwargs.get("ecmap", default_cm),
                             pmap_default=True)
1858

1859
1860
    vcmap = kwargs.get("vcmap", default_cm)
    ecmap = kwargs.get("ecmap", vcmap)
1861
1862
1863

    B = state.levels[0].B

1864
    if overlap and "pie_fractions" not in vprops:
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
        vprops["pie_fractions"] = bc.copy("vector<double>")
        if "pie_colors" not in vprops:
            vertex_pie_colors = g.new_vertex_property("vector<double>")
            nodes = defaultdict(list)
            def conv(k):
                clrs = [vcmap(r / (B - 1) if B > 1 else 0) for r in k]
                return [item for l in clrs for item in l]
            map_property_values(bv, vertex_pie_colors, conv)
            vprops["pie_colors"] = vertex_pie_colors

    gradient = eprops.get("gradient", None)
1876
1877
    if gradient is None:
        gradient = g.new_edge_property("double")
1878
        gradient = group_vector_property([gradient])
1879
1880
        ecolor = eprops.get("ecolor", _edefaults["color"])
        eprops["gradient"] = gradient
1881
        if overlap:
1882
            for e in g.edges():                       # ******** SLOW *******
1883
                r, s = be[e]
1884
                if not g.is_directed() and e.source() > e.target():
1885
1886
1887
                    r, s = s, r
                gradient[e] = [0] + list(vcmap(r / (B - 1))) + \
                              [1] + list(vcmap(s / (B - 1)))
1888
1889
1890
1891
                if isinstance(ecolor, PropertyMap):
                    gradient[e][4] = gradient[e][9] = ecolor[e][3]
                else:
                    gradient[e][4] = gradient[e][9] = ecolor[3]
1892
1893
1894


    t_orig = t
1895
    t = GraphView(t,
1896
                  vfilt=lambda v: int(v) >= g.num_vertices(True) and hvvisible[v])
1897

1898
1899
    t_vprops = {}
    t_eprops = {}
1900

1901
1902
1903
1904
1905
1906
1907
    props = []
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = (vprops.get(k, None), hvprops.get(k, None))
        props.append(t_vprops[k])
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = (eprops.get(k, None), heprops.get(k, None))
        props.append(t_eprops[k])
1908

1909
1910
1911
    props.append((pos, tpos))
    props.append((g.vertex_index, tb))
    props.append((b, None))
1912
1913
1914
1915
1916
    if "eorder" in kwargs:
        eorder = kwargs["eorder"]
        props.append((eorder,
                      t.new_ep(eorder.value_type(),
                               eorder.fa.max() + 1)))
1917

1918
    u, props = graph_union(g, t, props=props)
1919

1920
1921
1922
1923
1924
1925
1926
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = props.pop(0)
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = props.pop(0)
    pos = props.pop(0)
    tb = props.pop(0)
    b = props.pop(0)
1927
1928
    if "eorder" in kwargs:
        eorder = props.pop(0)
1929
1930
1931

    def update_cts(widget, gg, picked, pos, vprops, eprops):
        vmask = gg.vertex_index.copy("int")
1932
        u = GraphView(gg, directed=False, vfilt=vmask.fa < g.num_vertices(True))
1933
        cts = eprops["control_points"]
1934
        get_hierarchy_control_points(u, t_orig, pos, beta, cts=cts,
1935
                                     max_depth=len(state.levels) - hshortcuts)
1936
1937
1938

    def draw_branch(widget, gg, key_id, picked, pos, vprops, eprops):
        if key_id == ord('b'):
1939
1940
            if picked is not None and not isinstance(picked, PropertyMap) and int(picked) > g.num_vertices(True):
                p = shortest_path(t_orig, source=t_orig.vertex(t_orig.num_vertices(True) - 1),
1941
1942
1943
1944
1945
1946
1947
                                  target=picked)[0]
                l = len(state.levels) - max(len(p), 1)

                bstack = state.get_bstack()
                bs = [s.vp["b"].a for s in bstack[:l+1]]
                bs[-1][:] = 0

1948
                if not overlap:
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
                    b = state.project_level(l).b
                    u = GraphView(g, vfilt=b.a == tb[picked])
                    u.vp["b"] = state.levels[0].b
                    u = Graph(u, prune=True)
                    b = u.vp["b"]
                    bs[0] = b.a
                else:
                    be = orig_state.project_level(l).get_edge_blocks()
                    emask = g.new_edge_property("bool")
                    for e in g.edges():
                        rs = be[e]
                        if rs[0] == tb[picked] and rs[1] == tb[picked]:
                            emask[e] = True
1962
1963
1964
                    u = GraphView(g, efilt=emask)
                    d = u.degree_property_map("total")
                    u = GraphView(u, vfilt=d.fa > 0)
1965
1966
1967
1968
1969
1970
1971
                    u.ep["be"] = orig_state.levels[0].get_edge_blocks()
                    u = Graph(u, prune=True)
                    be = u.ep["be"]
                    s = OverlapBlockState(u, b=be)
                    bs[0] = s.b.a.copy()

                nstate = NestedBlockState(u, bs=bs,
1972
                                          base_type=type(state.levels[0]),
1973
1974
                                          deg_corr=state.deg_corr)

1975
1976
1977
1978
1979
1980
                kwargs_ = kwargs_orig.copy()
                if "no_main" in kwargs_:
                    del kwargs_["no_main"]
                draw_hierarchy(nstate, beta=beta, vprops=vprops_orig,
                               eprops=eprops_orig, hvprops=hvprops_orig,
                               heprops=heprops_orig,
1981
                               subsample_edges=subsample_edges,
1982
1983
1984
                               deg_order=deg_order, empty_branches=False,
                               no_main=True, **kwargs_)

1985
        if key_id == ord('r'):
1986
1987
1988
1989
1990
1991
1992
            if layout == "radial":
                x, y = ungroup_vector_property(pos, [0, 1])
                x.fa -= x.fa.mean()
                y.fa -= y.fa.mean()
                angle = gg.new_vertex_property("double")
                angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
                tpos = radial_tree_layout(t_orig,
1993
                                          root=t_orig.vertex(t_orig.num_vertices(True) - 1),
1994
1995
1996
                                          rel_order=angle)
                gg.copy_property(tpos, pos)

1997
1998
1999
2000
            update_cts(widget, gg, picked, pos, vprops, eprops)

            if widget.vertex_matrix is not None:
                widget.vertex_matrix.update()