__init__.py 20.8 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
6
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@forked.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24
25

This module includes centrality-related algorithms.
26
27
28
29
30
31
32
33
34
35
36

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
   eigentrust
37
   trust_transitivity
38
39
40

Contents
++++++++
41
42
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
43
44
45
from .. dl_import import dl_import
dl_import("import libgraph_tool_centrality")

46
from .. core import _prop, ungroup_vector_property
Tiago Peixoto's avatar
Tiago Peixoto committed
47
48
import sys
import numpy
Tiago Peixoto's avatar
Tiago Peixoto committed
49
50

__all__ = ["pagerank", "betweenness", "central_point_dominance", "eigentrust",
51
           "trust_transitivity"]
Tiago Peixoto's avatar
Tiago Peixoto committed
52

Tiago Peixoto's avatar
Tiago Peixoto committed
53

54
def pagerank(g, damping=0.8, prop=None, epslon=1e-6, max_iter=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
55
             ret_iter=False):
56
57
58
59
60
    r"""
    Calculate the PageRank of each vertex.

    Parameters
    ----------
61
    g : :class:`~graph_tool.Graph`
62
63
64
        Graph to be used.
    damping : float, optional (default: 0.8)
        Damping factor.
65
    prop : :class:`~graph_tool.PropertyMap`, optional (default: None)
66
67
68
69
70
71
72
73
74
75
76
        Vertex property map to store the PageRank values.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
77
78
    pagerank : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the PageRank values.
79
80
81
82
83

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
84
    trust_transitivity: pervasive trust transitivity
85
86
87

    Notes
    -----
88
    The value of PageRank [pagerank-wikipedia]_ of vertex v :math:`PR(v)` is
89
90
91
    given interactively by the relation:

    .. math::
92
93

        PR(v) = \frac{1-d}{N} + d \sum_{w \in \Gamma^{-}(v)}
94
                \frac{PR (w)}{d^{+}(w)}
95
96
97
98
99
100
101
102
103
104
105
106

    where :math:`\Gamma^{-}(v)` are the in-neighbours of v, :math:`d^{+}(w)` is
    the out-degree of w, and d is a damping factor.

    The implemented algorithm progressively iterates the above condition, until
    it no longer changes, according to the parameter epslon. It has a
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
107
108
    >>> from numpy.random import poisson, seed
    >>> seed(42)
109
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
110
    >>> pr = gt.pagerank(g)
111
    >>> print pr.a
Tiago Peixoto's avatar
Tiago Peixoto committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    [ 0.87011681  1.73449398  0.47587866  0.4534494   0.2         1.26596887
      0.60964865  0.68064477  0.8137542   0.86269096  0.51833002  0.49194604
      0.74875795  0.52831993  0.601438    0.63921165  1.32489495  0.68360746
      1.02608206  0.90903761  1.1026286   0.56290713  0.2         0.30840086
      0.90726785  0.35583967  0.95582862  0.232       0.41090313  0.88734742
      0.47424296  0.66138242  1.26313184  0.7459428   0.84110051  0.9497316
      1.0589998   0.94412292  0.26433617  0.86197354  0.2         0.25333333
      0.65974242  0.69889305  1.02798531  0.77618244  0.57905885  1.12828577
      0.232       1.18366748  0.38929224  1.72424164  0.47966878  1.0931673
      0.45937603  1.09479766  0.80274459  0.44782081  1.04618114  0.25333333
      0.82295953  0.40210109  0.72779393  0.75075946  0.41742276  0.2
      0.8984279   0.92941713  0.69682427  0.69340983  1.02679348  0.2
      0.67750539  0.85622403  0.77232588  1.09093307  1.14410169  0.59413937
      0.54456339  0.64371752  0.40275133  0.72976606  1.40446885  0.2
      0.31831299  0.3734494   0.2562224   1.05807688  1.02419007  0.82747632
      0.49646186  0.72960178  0.48621114  1.42147072  0.65622314  0.31664379
      1.55387576  0.58439879  2.03922765  1.47802266]
129
130
131

    References
    ----------
132
133
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
134
       "The pagerank citation ranking: Bringing order to the web", Technical
135
136
137
138
139
       report, Stanford University, 1998
    """

    if max_iter == None:
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
140
141
142
143
144
145
146
147
148
149
    if prop == None:
        prop = g.new_vertex_property("double")
    ic = libgraph_tool_centrality.\
            get_pagerank(g._Graph__graph, _prop("v", g, prop), damping, epslon,
                         max_iter)
    if ret_iter:
        return prop, ic
    else:
        return prop

Tiago Peixoto's avatar
Tiago Peixoto committed
150

151
152
153
154
155
156
def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
    r"""
    Calculate the betweenness centrality for each vertex and edge.

    Parameters
    ----------
157
    g : :class:`~graph_tool.Graph`
158
        Graph to be used.
159
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
160
        Vertex property map to store the vertex betweenness values.
161
    eprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
162
        Edge property map to store the edge betweenness values.
163
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
164
165
166
167
168
169
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
170
171
172
173
    vertex_betweenness : A vertex property map with the vertex betweenness
                         values.
    edge_betweenness : An edge property map with the edge betweenness
                       values.
174
175
176
177
178
179

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
180
    trust_transitivity: pervasive trust transitivity
181
182
183
184
185

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

186
187
    .. math::

188
189
190
191
192
193
194
195
196
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

    where :math:`\sigma_{st}` is the number of shortest geodesic paths from s to
    t, and :math:`\sigma_{st}(v)` is the number of shortest geodesic paths from
    s to t that pass through a vertex v.  This may be normalised by dividing
    through the number of pairs of vertices not including v, which is
    :math:`(n-1)(n-2)/2`.

197
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
198
199
200
201
202
203
204
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE + V(V+E)
    \log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
205
206
    >>> from numpy.random import poisson, seed
    >>> seed(42)
207
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
208
    >>> vb, eb = gt.betweenness(g)
209
    >>> print vb.a
Tiago Peixoto's avatar
Tiago Peixoto committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    [  2.65012897e-02   1.04414799e-01   2.73374899e-02   1.52782183e-02
       0.00000000e+00   2.74548352e-02   3.54680121e-02   3.72671558e-02
       2.39732112e-02   2.34942149e-02   2.97950758e-02   4.08351383e-02
       4.31702840e-02   1.90317902e-02   3.66879750e-02   8.65571818e-03
       0.00000000e+00   3.74046494e-02   4.22428130e-02   2.10503176e-02
       1.39558854e-02   8.40349783e-03   0.00000000e+00   4.45784374e-03
       3.38671970e-02   1.72390157e-02   4.82232543e-02   1.03071532e-04
       1.42200266e-02   4.82793598e-02   1.82020235e-02   0.00000000e+00
       7.04969679e-02   2.31267158e-02   6.42817952e-02   3.71139131e-02
       3.81618985e-02   4.06231715e-02   2.16376594e-03   2.44758076e-02
       0.00000000e+00   6.86198722e-03   1.36132952e-02   1.73886977e-02
       2.30213129e-02   4.44999980e-02   0.00000000e+00   1.40589569e-02
       0.00000000e+00   4.74213177e-02   2.65427674e-02   1.05684330e-01
       6.30552365e-03   2.86320444e-02   4.50079022e-03   7.76843152e-02
       2.88642900e-02   3.52207159e-02   2.01852506e-02   9.26784855e-04
       4.35733012e-02   1.84745904e-02   1.35102237e-02   2.69638287e-02
       1.88247064e-02   0.00000000e+00   2.03784688e-02   4.14981678e-02
       1.79538495e-02   1.12983577e-02   3.23765203e-02   0.00000000e+00
       3.99771399e-02   2.85164571e-03   2.18967289e-02   3.96111705e-02
       3.40096863e-02   1.72800650e-02   1.36861815e-02   0.00000000e+00
       1.19328203e-02   1.71726485e-02   0.00000000e+00   0.00000000e+00
       6.33251858e-03   4.64324980e-03   1.33084980e-03   9.89021626e-02
       3.52934995e-02   2.96267777e-02   1.73480268e-02   3.07545000e-02
       2.47891161e-02   3.32486832e-02   7.45403501e-03   1.46792267e-02
       0.00000000e+00   3.35642472e-02   8.78597450e-02   3.94517740e-02]
235
236
237

    References
    ----------
238
239
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
240
241
       centrality",  Journal of Mathematical Sociology, 2001
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
242
243
244
245
246
247
248
249
250
251
252
253
254
    if vprop == None:
        vprop = g.new_vertex_property("double")
    if eprop == None:
        eprop = g.new_edge_property("double")
    if weight != None and weight.value_type() != eprop.value_type():
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
    libgraph_tool_centrality.\
            get_betweenness(g._Graph__graph, _prop("e", g, weight),
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

Tiago Peixoto's avatar
Tiago Peixoto committed
255

Tiago Peixoto's avatar
Tiago Peixoto committed
256
def central_point_dominance(g, betweenness):
257
258
259
260
261
262
    r"""
    Calculate the central point dominance of the graph, given the betweenness
    centrality of each vertex.

    Parameters
    ----------
263
    g : :class:`~graph_tool.Graph`
264
        Graph to be used.
265
    betweenness : :class:`~graph_tool.PropertyMap`
266
267
268
269
270
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
271
272
    cp : float
        The central point dominance.
273
274
275
276
277
278
279
280

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
281
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
282
283
    as:

284
285
    .. math::

286
287
288
289
290
291
292
293
294
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
295
296
    >>> from numpy.random import poisson, seed
    >>> seed(42)
297
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
298
299
    >>> vb, eb = gt.betweenness(g)
    >>> print gt.central_point_dominance(g, vb)
Tiago Peixoto's avatar
Tiago Peixoto committed
300
    0.0813233725942
301
302
303

    References
    ----------
304
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
305
306
307
       Based on Betweenness", Sociometry, Vol. 40, No. 1,  pp. 35-41 (1977)
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
308
    return libgraph_tool_centrality.\
309
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
310
311
                                       _prop("v", g, betweenness))

312
313

def eigentrust(g, trust_map, vprop=None, norm=False, epslon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
314
               ret_iter=False):
315
316
317
318
319
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
320
    g : :class:`~graph_tool.Graph`
321
        Graph to be used.
322
    trust_map : :class:`~graph_tool.PropertyMap`
323
        Edge property map with the values of trust associated with each
324
        edge. The values must lie in the range [0,1].
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    vprop : PropertyMap, optional (default: None)
        Vertex property map where the values of eigentrust must be stored.
    norm : bool, optional (default: false)
        Norm eigentrust values so that the total sum equals 1.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
339
    eigentrust : A vertex property map containing the eigentrust values.
340
341
342
343
344

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
345
    trust_transitivity: pervasive trust transitivity
346
347
348

    Notes
    -----
349
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
350
351
    following limit

352
353
    .. math::

354
355
356
357
358
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

359
360
    .. math::

361
362
363
364
365
366
367
368
369
370
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
371
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
372
373
    >>> trust = g.new_edge_property("double")
    >>> trust.get_array()[:] = random(g.num_edges())*42
374
    >>> t = gt.eigentrust(g, trust, norm=True)
375
    >>> print t.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    [ 0.01610395  0.03518828  0.00387335  0.00506519  0.          0.02120586
      0.00328345  0.00514034  0.00361398  0.01331587  0.00626757  0.00788882
      0.01599836  0.00607798  0.00879484  0.01028104  0.01742029  0.00522399
      0.0206618   0.0098984   0.00918508  0.01344131  0.          0.00047679
      0.01760032  0.00078869  0.01045936  0.          0.00387405  0.01761267
      0.00730843  0.00514523  0.01708638  0.0084908   0.01237811  0.01401104
      0.0209564   0.0132232   0.00031255  0.01400855  0.          0.          0.0077233
      0.00479587  0.01646928  0.01499744  0.01901516  0.00843277  0.
      0.01764526  0.00243523  0.01726375  0.01272935  0.0163525   0.00382533
      0.02037745  0.00758792  0.00350063  0.01303079  0.          0.02086308
      0.00062028  0.00841231  0.00983605  0.00327547  0.          0.01016667
      0.0170241   0.00782474  0.00516862  0.02394048  0.          0.00747778
      0.00792131  0.01495136  0.01513948  0.02287957  0.00788276  0.0053207
      0.00145811  0.00183203  0.0033493   0.01627589  0.          0.00476343
      0.00937439  0.00200381  0.01400712  0.02135004  0.00549685  0.00230923
      0.01426992  0.01083921  0.03439618  0.00514281  0.00114438  0.02259093
      0.00672266  0.02753108  0.01859351]
393
394
395

    References
    ----------
396
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
397
398
399
400
401
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
       Pages: 640 - 651, 2003
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
402
403
    if vprop == None:
        vprop = g.new_vertex_property("double")
404
405
406
407
408
409
410
411
412
413
414
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
                          _prop("v", g, vprop), epslon, max_iter)
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
415

416
def trust_transitivity(g, trust_map, source=None, target=None, vprop=None):
417
    r"""
418
419
    Calculate the pervasive trust transitivity between chosen (or all) vertices
    in the graph.
420
421
422

    Parameters
    ----------
423
    g : :class:`~graph_tool.Graph`
424
        Graph to be used.
425
    trust_map : :class:`~graph_tool.PropertyMap`
426
427
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
428
    source : Vertex (optional, default: None)
429
        Source vertex. All trust values are computed relative to this vertex.
430
        If left unspecified, the trust values for all sources are computed.
431
    target : Vertex (optional, default: None)
432
433
434
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
435
436
        A vertex property map where the values of transitive trust must be
        stored.
437
438
439

    Returns
    -------
440
441
442
443
444
445
446
447
    trust_transitivity : :class:`~graph_tool.PropertyMap` or float
        A vertex vector property map containing, for each source vertex, a
        vector with the trust values for the other vertices. If only one of
        `source` or `target` is specified, this will be a single-valued vertex
        property map containing the trust vector from/to the source/target
        vertex to/from the rest of the network. If both `source` and `target`
        are specified, the result is a single float, with the corresponding
        trust value for the target.
448

449
450
451
452
453
454
455
456
457
458
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
    The absolute trust between vertices i and j is defined as

459
460
    .. math::

461
462
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
463

464
465
466
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
467

468
469
    .. math::

470
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
471

472
473
    The algorithm measures the transitive trust by finding the paths with
    maximum weight, using Dijkstra's algorithm, to all in-neighbours of a given
474
    target. This search needs to be performed repeatedly for every target, since
475
476
477
478
479
480
481
    it needs to be removed from the graph first. For each given source, the
    resulting complexity is therefore :math:`O(N^2\log N)` for all targets, and
    :math:`O(N\log N)` for a single target. For a given target, the complexity
    for obtaining the trust from all given sources is :math:`O(kN\log N)`, where
    :math:`k` is the in-degree of the target. Thus, the complexity for obtaining
    the complete trust matrix is :math:`O(EN\log N)`, where :math:`E` is the
    number of edges in the network.
482
483
484
485
486
487
488

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
489
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
490
    >>> trust = g.new_edge_property("double")
491
    >>> trust.a = random(g.num_edges())
492
    >>> t = gt.trust_transitivity(g, trust, source=g.vertex(0))
493
    >>> print t.a
494
    [ 1.          0.15271582  0.07130332  0.10597708  0.          0.58940763
Tiago Peixoto's avatar
Tiago Peixoto committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
      0.04233924  0.03619048  0.04137002  0.05926363  0.06584407  0.06315985
      0.22301815  0.02671845  0.10566551  0.08018763  0.57668762  0.08440303
      0.17612948  0.37579015  0.0415804   0.19919108  0.          0.0141547
      0.14901031  0.00910391  0.02680543  0.          0.0887711   0.0296914
      0.09800672  0.06421615  0.16420105  0.10226839  0.08667606  0.07944174
      0.17174637  0.10932321  0.0137295   0.09342906  0.          0.
      0.11065065  0.03725047  0.23554212  0.10971862  0.54564134  0.0462946   0.
      0.24820041  0.15281463  0.09449931  0.22419781  0.03108608  0.10964166
      0.08642532  0.03495468  0.05656444  0.04045297  0.          0.13789871
      0.0197414   0.05512572  0.08297112  0.21448002  0.          0.08649514
      0.0718887   0.16546776  0.04108292  0.11710843  0.          0.12518596
      0.04797708  0.02275816  0.10413969  0.1294644   0.08656727  0.28371423
      0.1036658   0.01575087  0.02023104  0.067158    0.          0.03241519
      0.19613692  0.05684533  0.29652909  0.03038526  0.02423028  0.01695595
      0.0759531   0.17360708  0.51113999  0.03714076  0.03167552  0.04359062
      0.0267188   0.47605313  0.06471942]
511
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
512
513

    if vprop == None:
514
        vprop = g.new_vertex_property("vector<double>")
515

516
517
518
519
    if target == None:
        target = -1
    else:
        target = g.vertex_index[target]
520

521
522
523
524
525
    if source == None:
        source = -1
    else:
        source = g.vertex_index[source]

526
    libgraph_tool_centrality.\
527
528
529
530
            get_trust_transitivity(g._Graph__graph, source, target,
                                   _prop("e", g, trust_map),
                                   _prop("v", g, vprop))
    if target != -1 or source != -1:
531
        vprop = ungroup_vector_property(vprop, [0])[0]
532
    if target != -1 and source != -1:
533
        return vprop.a[target]
534
    return vprop