graph_assortativity.hh 6.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_ASSORTATIVITY_HH
#define GRAPH_ASSORTATIVITY_HH

#include <tr1/unordered_set>
#include "shared_map.hh"

namespace graph_tool
{
using namespace std;
using namespace boost;

// this will calculate the assortativity coefficient, based on the property
// pointed by 'deg'

struct get_assortativity_coefficient
{
    template <class Graph, class DegreeSelector>
    void operator()(const Graph* gp, DegreeSelector deg, double& r,
                    double& r_err) const
    {
        const Graph& g = *gp;
        size_t n_edges = 0;
        int e_kk = 0;
        tr1::unordered_map<double,int> a, b;
        SharedMap<tr1::unordered_map<double,int> > sa(a), sb(b);

        int i, N = num_vertices(g);
        #pragma omp parallel for default(shared) private(i) firstprivate(sa,sb)\
            schedule(dynamic) reduction(+:e_kk, n_edges)
        for (i = 0; i < N; ++i)
        {
            typename graph_traits<Graph>::vertex_descriptor v = vertex(i, g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;

            double k1 = deg(v, g);
            typename graph_traits<Graph>::out_edge_iterator e, e_end;
            for (tie(e,e_end) = out_edges(v, g); e != e_end; ++e)
            {
                double k2 = deg(target(*e, g), g);
                sa[k1]++;
                sb[k2]++;
                if (k1 == k2)
                    e_kk++;
                n_edges++;
            }
        }

        sa.Gather();
        sb.Gather();

        double t1=double(e_kk)/n_edges, t2=0.0;

        for (typeof(a.begin()) iter = a.begin(); iter != a.end(); ++iter)
            if (b.find(iter->second) != b.end())
                t2 += double(iter->second * b[iter->first]);
        t2 /= n_edges*n_edges;

        r = (t1 - t2)/(1.0 - t2);

        // "jackknife" variance
        double err = 0.0;
        #pragma omp parallel for default(shared) private(i) schedule(dynamic)\
            reduction(+:err)
        for (i = 0; i < N; ++i)
        {
            typename graph_traits<Graph>::vertex_descriptor v = vertex(i, g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;

            double k1 = deg(v, g);
            typename graph_traits<Graph>::out_edge_iterator e, e_end;
            for (tie(e,e_end) = out_edges(v, g); e != e_end; ++e)
            {
                double k2 = deg(target(*e,g),g);
                double tl2 = (t2*(n_edges*n_edges) - b[k1] - a[k2])/
                    ((n_edges-1)*(n_edges-1));
                double tl1 = t1*n_edges;
                if (k1 == k2)
                    tl1 -= 1;
                tl1 /= n_edges - 1;
                double rl = (tl1 - tl2)/(1.0 - tl2);
                err += (r-rl)*(r-rl);
            }
        }
        r_err = sqrt(err);
    }
};

// this will calculate the _scalar_ assortativity coefficient, based on the
// scalar property pointed by 'deg'

struct get_scalar_assortativity_coefficient
{
    template <class Graph, class DegreeSelector>
    void operator()(const Graph* gp, DegreeSelector deg, double& r,
                    double& r_err) const
    {
        const Graph& g = *gp;
        size_t n_edges = 0;
        double e_xy = 0.0;
        tr1::unordered_map<double,int> a, b;
        SharedMap<tr1::unordered_map<double,int> > sa(a), sb(b);

        int i, N = num_vertices(g);
        #pragma omp parallel for default(shared) private(i) firstprivate(sa,sb)\
            schedule(dynamic) reduction(+:e_xy, n_edges)
        for (i = 0; i < N; ++i)
        {
            typename graph_traits<Graph>::vertex_descriptor v = vertex(i, g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;

            double k1 = deg(v, g);
            typename graph_traits<Graph>::out_edge_iterator e, e_end;
            for (tie(e,e_end) = out_edges(v, g); e != e_end; ++e)
            {
                double k2 = deg(target(*e,g),g);
                sa[k1]++;
                sb[k2]++;
                e_xy += k1*k2;
                n_edges++;
            }
        }

        sa.Gather();
        sb.Gather();

        double t1 = e_xy/n_edges;
        double avg_a = GetHistogramMean(a), avg_b = GetHistogramMean(b);
        double da = GetHistogramDeviation(a,avg_a), db =
            GetHistogramDeviation(b,avg_b);

        if (da*db > 0)
            r = (t1 - avg_a*avg_b)/(da*db);
        else
            r = (t1 - avg_a*avg_b);

        // "jackknife" variance
        r_err = 0.0;
        double diff_a = 0.0, diff_b = 0.0;
        for (typeof(a.begin()) iter = a.begin(); iter != a.end(); ++iter)
            diff_a += (iter->first - avg_a)*iter->second;
        for (typeof(b.begin()) iter = b.begin(); iter != b.end(); ++iter)
            diff_b += (iter->first - avg_b)*iter->second;

        double err = 0.0;
        #pragma omp parallel for default(shared) private(i) schedule(dynamic)\
            reduction(+:err)
        for (i = 0; i < N; ++i)
        {
            typename graph_traits<Graph>::vertex_descriptor v = vertex(i, g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;

            double k1 = deg(v, g);
            typename graph_traits<Graph>::out_edge_iterator e, e_end;
            for (tie(e,e_end) = out_edges(v, g); e != e_end; ++e)
            {
                double k2 = deg(target(*e, g), g);
                double t1l = (e_xy - k1*k2)/(n_edges-1);
                double avg_al = (avg_a*n_edges - k1)/(n_edges-1);
                double avg_bl = (avg_b*n_edges - k2)/(n_edges-1);
                double dal = da - 2*diff_a*(avg_al-avg_a) +
                    (avg_al-avg_a)*(avg_al-avg_a);
                double dbl = db - 2*diff_b*(avg_bl-avg_b) +
                    (avg_bl-avg_b)*(avg_bl-avg_b);
                double rl;
                if (dal*dbl > 0)
                    rl = (t1l - avg_al*avg_bl)/(dal*dbl);
                else
                    rl = (t1l - avg_al*avg_bl);
                err += (r-rl)*(r-rl);
            }
        }
        r_err = sqrt(err);
    }
};

} // graph_tool namespace

#endif //GRAPH_ASSORTATIVITY_HH