graph_rewiring.hh 22.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
22
#include <tr1/random>
23
24
25
26
#include <boost/functional/hash.hpp>

#include "graph.hh"
#include "graph_filtering.hh"
27
#include "graph_util.hh"
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

namespace graph_tool
{
using namespace std;
using namespace boost;


// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
76
77
            nt = target(te, g),        // new target
            te_s = source(te, g),      // target edge source
78
79
80
81
82
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
83
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
84
85
86
87
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
88
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
89
            return true; // e would clash with an existing (new) edge
90
        if (edge_is_new[te] && is_adjacent_in_new(te_s, t, edge_is_new, g))
91
            return true; // te would clash with an existing (new) edge
92
        if (edge_is_new[se] && is_adjacent_in_new(s, se_t, edge_is_new, g))
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
108
            if (edge_is_new[*e] && target(*e,g) == v)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
134
            ne = add_edge(source(se, g), target(te, g), g).first;
135
136
137
138
139
140
141
142
143
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
144
                nte = add_edge(source(te, g), target(e, g), g).first;
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
171
    void operator()(Graph& g, EdgeIndexMap edge_index, rng_t& rng,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
Tiago Peixoto's avatar
Tiago Peixoto committed
193
                throw ValueException("Self-loop detected. Can't rewire graph "
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
Tiago Peixoto's avatar
Tiago Peixoto committed
223
                throw ValueException("Parallel edge detected. Can't rewire "
224
225
226
227
228
229
230
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
231
232
233
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
234
        {
235
236
237
238
239
240
241
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
242
243
244
        }

        // for each edge simultaneously rewire its source and target
245
        for (size_t i = 0; i < edges.size(); ++i)
246
        {
247
248
            if (!is_edge[i])
                continue;
249
250
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
251
            rewire(e, edges, is_edge, self_loops, parallel_edges);
252
253
254
255
256
257
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
258
259
template <class RandomAccessIterator, class RNG,
          class RandomDist = tr1::uniform_int<size_t> >
260
261
class random_permutation_iterator : public
    std::iterator<input_iterator_tag, typename RandomAccessIterator::value_type>
262
263
{
public:
264
265
266
    random_permutation_iterator(RandomAccessIterator begin,
                                RandomAccessIterator end, RNG& rng)
        : _i(begin), _end(end), _rng(&rng)
267
    {
268
269
270
271
272
        if(_i != _end)
        {
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
        }
273
    }
274

275
276
277
278
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
279

280
281
282
    random_permutation_iterator& operator++()
    {
        ++_i;
283
        if(_i != _end)
284
        {
285
286
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
287
        }
288
289
        return *this;
    }
290

291
    bool operator==(const random_permutation_iterator& ri)
292
    {
293
        return _i == ri._i;
294
    }
295

296
    bool operator!=(const random_permutation_iterator& ri)
297
    {
298
        return _i != ri._i;
299
    }
300
301
302
303
304
305

    size_t operator-(const random_permutation_iterator& ri)
    {
        return _i - ri._i;
    }

306
private:
307
308
    RandomAccessIterator _i, _end;
    RNG* _rng;
309
310
};

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// this will rewire the edges so that the resulting graph will be entirely
// random (i.e. Erdos-Renyi)
template <class Graph, class EdgeIndexMap>
class ErdosRewireStrategy
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    ErdosRewireStrategy(Graph& g, EdgeIndexMap edge_index, rng_t& rng)
        : _g(g), _edge_index(edge_index), _vertices(HardNumVertices()(g)),
          _rng(rng)
    {
        typeof(_vertices.begin()) viter = _vertices.begin();
        typename graph_traits<Graph>::vertex_iterator v, v_end;
        for (tie(v, v_end) = vertices(_g); v != v_end; ++v)
            *(viter++) = *v;
    }

    template<class EdgesType>
    void operator()(const edge_t& e, EdgesType& edges, vector<bool>& is_edge,
                    bool self_loops, bool parallel_edges)
    {
        //try randomly drawn pairs of vertices until one satisfies all the
        //consistency checks
        typedef random_permutation_iterator
            <typename graph_traits<Graph>::vertex_iterator, rng_t>
            random_vertex_iter;

        tr1::uniform_int<size_t> sample(0, _vertices.size());
        typename graph_traits<Graph>::vertex_descriptor s, t;
        while (true)
        {
            s = sample(_rng);
            t = sample(_rng);

            if(s == t && !self_loops) // reject self-loops if not allowed
                continue;
            if (!parallel_edges &&
                swap_edge_triad::is_adjacent_in_new(s, t, _edge_is_new, _g))
                continue;  // reject parallel edges if not allowed
            break;
        }
        edge_t ne = add_edge(s, t, _g).first;
        edges[_edge_index[e]] = ne;
        remove_edge(e, _g);
        if (_edge_index[ne] >= edges.size())
        {
            edges.resize(_edge_index[ne] + 1);
            is_edge.resize(_edge_index[ne] + 1, false);
        }
        edges[_edge_index[ne]] = ne;
        is_edge[_edge_index[ne]] = true;

        _edge_is_new[ne] = true;
    }

private:
    Graph& _g;
    EdgeIndexMap _edge_index;
    vector<typename graph_traits<Graph>::vertex_descriptor> _vertices;
372
    checked_vector_property_map<bool, EdgeIndexMap> _edge_is_new;
373
374
375
376
    rng_t& _rng;
};


377
378
379
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
380
381
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
382
383
384
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
385
386
    typedef typename EdgeIndexMap::value_type index_t;

387
388
    RewireStrategyBase(Graph& g, EdgeIndexMap edge_index, rng_t& rng)
        : _g(g), _edge_index(edge_index), _edge_is_new(edge_index), _rng(rng) {}
389
390

    template<class EdgesType>
391
392
    void operator()(const edge_t& e, EdgesType& edges, vector<bool>& is_edge,
                    bool self_loops, bool parallel_edges)
393
    {
394
        // where should we sample the edges from
395
396
397
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
398
399
400
401

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
402
        edge_t es = e, et = e;
403
        typedef random_permutation_iterator
404
            <typename vector<index_t>::iterator, rng_t> random_edge_iter;
405

406
407
408
409
410
        random_edge_iter esi(edges_source->begin(), edges_source->end(),
                             _rng),
                         esi_end(edges_source->end(), edges_source->end(),
                             _rng);
        for (; esi != esi_end && !found; ++esi)
411
        {
412
413
            if (!is_edge[*esi])
                continue;
414
            es = edges[*esi];
415
416
            static_cast<RewireStrategy*>(this)->check_source_edge(es, e);

417
418
            if(!self_loops) // reject self-loops if not allowed
            {
419
                if((source(e, _g) == target(es, _g)))
420
421
422
                    continue;
            }

423
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
424
425
                                 _rng),
                             eti_end(edges_target->end(), edges_target->end(),
426
                                 _rng);
427
            for (; eti != eti_end && !found; ++eti)
428
            {
429
430
                if (!is_edge[*eti])
                    continue;
431
                et = edges[*eti];
432
433
                static_cast<RewireStrategy*>(this)->check_target_edge(et, e);

434
435
                if (!self_loops) // reject self-loops if not allowed
                {
436
437
                    if ((source(es, _g) == target(et, _g)) ||
                        (source(et, _g) == target(e, _g)))
438
439
440
441
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
442
443
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new,
                                                        _g))
444
445
446
447
448
449
450
451
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
452
        _edge_is_new[e] = true;
453
        swap_edge_triad()(e, es, et, edges, _edge_index, _g);
454
455
456
    }

private:
457
458
    Graph& _g;
    EdgeIndexMap _edge_index;
459
    checked_vector_property_map<bool, EdgeIndexMap> _edge_is_new;
460
    rng_t& _rng;
461
462
};

463
464
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
465
template <class Graph, class EdgeIndexMap>
466
467
468
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
469
470
{
public:
471
472
473
474
475
476
477
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

478
479
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
480
    typedef typename EdgeIndexMap::value_type index_t;
481

482
    RandomRewireStrategy(Graph& g, EdgeIndexMap edge_index,
483
484
                         rng_t& rng)
        : base_t(g, edge_index, rng)
485
    {
486
487
488
489
        typename graph_traits<Graph>::edge_iterator e_i, e_i_end;
        for (tie(e_i, e_i_end) = edges(g); e_i != e_i_end; ++e_i)
            _all_edges.push_back(edge_index[*e_i]);
        _all_edges2 = _all_edges;
490
    }
491
492
493

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
494
    {
495
        edges_source = &_all_edges;
496
        edges_target = &_all_edges2;
497
    }
498

499
500
501
    void check_source_edge(edge_t& se, const edge_t& e) {}
    void check_target_edge(edge_t& te, const edge_t& e) {}

502
503
private:
    vector<index_t> _all_edges;
504
    vector<index_t> _all_edges2;
505
};
506

507
508
509
510

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
511
512
513
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
514
515
{
public:
516
517
518
519
520
521
522
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

523
524
525
526
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

527
    CorrelatedRewireStrategy (Graph& g, EdgeIndexMap edge_index,
528
                              rng_t& rng) : base_t(g, edge_index, rng), _g(g)
529
    {
530
531
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
532
        {
533
534
535
536
537
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
538
            {
539
540
541
542
543
                // For undirected graphs, there is no difference between source
                // and target, and each edge will appear _twice_ on the lists
                // below, once for each different ordering of source and target.

                _edges_by_source
544
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
545
                               out_degree(source(*e_i, _g), _g))]
546
                    .push_back(edge_index[*e_i]);
547
548
549
550

                _edges_by_target
                    [make_pair(in_degreeS()(target(*e_i, _g), _g),
                               out_degree(target(*e_i, _g), _g))]
551
                    .push_back(edge_index[*e_i]);
552
553
554
            }
        }
    }
555
556
557

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
558
    {
559
560
561
        pair<size_t, size_t> deg_source =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));
562
563
        edges_source = &_edges_by_source[deg_source];

564
565

        pair<size_t, size_t> deg_target =
566
567
            make_pair(in_degreeS()(target(e, _g), _g),
                      out_degree(target(e, _g), _g));
568

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        edges_target = &_edges_by_target[deg_target];
    }


    void check_source_edge(edge_t& se, const edge_t& e)
    {
        check_source_edge_if_undirected
            (se, e, typename is_directed::apply<Graph>::type());
    }
    void check_target_edge(edge_t& te, const edge_t& e)
    {
        check_target_edge_if_undirected
            (te, e, typename is_directed::apply<Graph>::type());
    }

    void check_source_edge_if_undirected(edge_t& se, const edge_t& e,
                                         boost::true_type) {}
    void check_target_edge_if_undirected(edge_t& te, const edge_t& e,
                                         boost::true_type) {}

    void check_source_edge_if_undirected(edge_t& se, const edge_t& e,
                                         boost::false_type)
    {
        // check if the edge direction is correct, otherwise invert it.
        pair<size_t, size_t> deg_source1 =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));

        pair<size_t, size_t> deg_source2 =
            make_pair(in_degreeS()(source(se, _g), _g),
                      out_degree(source(se, _g), _g));

        if (deg_source1 != deg_source2)
            se = edge_t(se, !se.IsInverted());
    }

    void check_target_edge_if_undirected(edge_t& te, const edge_t& e,
                                         boost::false_type)
    {
        // check if the edge direction is correct, otherwise invert it.
        pair<size_t, size_t> deg_target1 =
            make_pair(in_degreeS()(target(e, _g), _g),
                      out_degree(target(e, _g), _g));

        pair<size_t, size_t> deg_target2 =
            make_pair(in_degreeS()(target(te, _g), _g),
                      out_degree(target(te, _g), _g));

        if (deg_target1 != deg_target2)
            te = edge_t(te, !te.IsInverted());
619
    }
620

621
private:
622
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
623
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
624
625
    edges_by_end_deg_t _edges_by_source, _edges_by_target;
    vector<index_t> _temp;
626
627
628

protected:
    const Graph& _g;
629
630
631
632
633
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH