cairo_draw.py 95.9 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1001
1002
1003
1004
    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
1005
    props = _convert_props(props, "v", g, kwargs.get("vcmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1006
1007
    vprops.update(props)
    props, kwargs = parse_props("edge", kwargs)
1008
    props = _convert_props(props, "e", g, kwargs.get("ecmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1009
1010
1011
    eprops.update(props)

    if pos is None:
1012
        if (g.num_vertices() > 2 and output is None and
1013
1014
            not inline and kwargs.get("update_layout", True) and
            mplfig is None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
            L = np.sqrt(g.num_vertices())
            pos = random_layout(g, [L, L])
            if g.num_vertices() > 1000:
                if "multilevel" not in kwargs:
                    kwargs["multilevel"] = True
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos) / 10
        else:
            pos = sfdp_layout(g)
1024
1025
    else:
        _check_prop_vector(pos, name="pos", floating=True)
1026
        if output is None and not inline:
1027
1028
1029
1030
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos)
            if "update_layout" not in kwargs:
                kwargs["update_layout"] = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1031

1032
1033
1034
    if "pen_width" in eprops and "marker_size" not in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1035
            pw = pw.copy("double")
1036
            pw.fa *= 2.75
1037
1038
1039
            eprops["marker_size"] = pw
        else:
            eprops["marker_size"] = pw * 2.75
1040

1041
1042
1043
    if "text" in eprops and "text_distance" not in eprops and "pen_width" in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1044
            pw = pw.copy("double")
1045
            pw.fa *= 2
1046
1047
1048
1049
            eprops["text_distance"] = pw
        else:
            eprops["text_distance"] = pw * 2

1050
    if "text" in vprops and ("text_color" not in vprops or vprops["text_color"] == "auto"):
1051
        vcmap = kwargs.get("vcmap", matplotlib.cm.jet)
1052
1053
1054
1055
        bg = _convert(vertex_attrs.fill_color,
                      vprops.get("fill_color", _vdefaults["fill_color"]),
                      vcmap)
        bg_color = kwargs.get("bg_color", [1., 1., 1., 1.])
1056
1057
1058
1059
1060
        vprops["text_color"] = auto_colors(g, bg,
                                           vprops.get("text_position",
                                                      _vdefaults["text_position"]),
                                           bg_color)

1061
    if mplfig:
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        ax = None
        if isinstance(mplfig, matplotlib.figure.Figure):
            ctr = ax = mplfig.gca()
        elif isinstance(mplfig, matplotlib.axes.Axes):
            ctr = ax = mplfig
        else:
            ctr = mplfig

        artist = GraphArtist(g, pos, vprops, eprops, vorder, eorder, nodesfirst,
                             ax, **kwargs)
        ctr.artists.append(artist)

1074
1075
1076
1077
1078
1079
1080
1081
1082
        if fit_view != False and ax is not None:
            try:
                x, y, w, h = fit_view
            except TypeError:
                x, y = ungroup_vector_property(pos, [0, 1])
                l, r = x.a.min(), x.a.max()
                b, t = y.a.min(), y.a.max()
                w = r - l
                h = t - b
1083
1084
1085
            if fit_view != True:
                w *= float(fit_view)
                h *= float(fit_view)
1086
1087
1088
1089
            ax.set_xlim(l - w * .1, r + w * .1)
            ax.set_ylim(b - h * .1, t + h * .1)

        return pos
1090

1091
1092
    if inline:
        if fmt == "auto":
1093
1094
1095
1096
1097
            if output is None:
                fmt = "png"
            else:
                fmt = get_file_fmt(output)
        output_file = output
1098
1099
        output = io.BytesIO()

1100
    if output is None:
1101
        fit_area = fit_view if fit_view != True else 0.95
Tiago Peixoto's avatar
Tiago Peixoto committed
1102
        return interactive_window(g, pos, vprops, eprops, vorder, eorder,
1103
1104
                                  nodesfirst, geometry=output_size,
                                  fit_area=fit_area, **kwargs)
Tiago Peixoto's avatar
Tiago Peixoto committed
1105
    else:
1106
        if isinstance(output, (str, unicode)):
1107
1108
1109
1110
1111
            out, auto_fmt = open_file(output, mode="wb")
        else:
            out = output
            if fmt == "auto":
                raise ValueError("File format must be specified.")
Tiago Peixoto's avatar
Tiago Peixoto committed
1112
1113

        if fmt == "auto":
1114
            fmt = auto_fmt
Tiago Peixoto's avatar
Tiago Peixoto committed
1115
1116
1117
1118
        if fmt == "pdf":
            srf = cairo.PDFSurface(out, output_size[0], output_size[1])
        elif fmt == "ps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
Tiago Peixoto's avatar
Tiago Peixoto committed
1119
1120
1121
        elif fmt == "eps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
            srf.set_eps(True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        elif fmt == "svg":
            srf = cairo.SVGSurface(out, output_size[0], output_size[1])
        elif fmt == "png":
            srf = cairo.ImageSurface(cairo.FORMAT_ARGB32, output_size[0],
                                     output_size[1])
        else:
            raise ValueError("Invalid format type: " + fmt)

        cr = cairo.Context(srf)

        adjust_default_sizes(g, output_size, vprops, eprops)
1133
1134
1135
1136
1137
        if fit_view != False:
            try:
                x, y, w, h = fit_view
                offset, zoom = [0, 0], 1
            except TypeError:
1138
                pad = fit_view if fit_view != True else 0.95
1139
1140
1141
1142
1143
1144
1145
                offset, zoom = fit_to_view(g, pos, output_size, vprops["size"],
                                           vprops["pen_width"], None,
                                           vprops.get("text", None),
                                           vprops.get("font_family",
                                                      _vdefaults["font_family"]),
                                           vprops.get("font_size",
                                                      _vdefaults["font_size"]),
1146
                                           pad, cr)
1147
                fit_view = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
        else:
            offset, zoom = [0, 0], 1

        if "bg_color" in kwargs:
            bg_color = kwargs["bg_color"]
            del  kwargs["bg_color"]
            cr.set_source_rgba(bg_color[0], bg_color[1],
                               bg_color[2], bg_color[3])
            cr.paint()
1157

Tiago Peixoto's avatar
Tiago Peixoto committed
1158
1159
1160
1161
        cr.translate(offset[0], offset[1])
        cr.scale(zoom, zoom)

        cairo_draw(g, pos, cr, vprops, eprops, vorder, eorder,
1162
                   nodesfirst, fit_view=fit_view, **kwargs)
1163

1164
        if fmt == "png":
Tiago Peixoto's avatar
Tiago Peixoto committed
1165
            srf.write_to_png(out)
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

        del cr

        if inline:
            img = None
            if fmt == "png":
                img = IPython.display.Image(data=out.getvalue())
            if fmt == "svg":
                img = IPython.display.SVG(data=out.getvalue())
            if img is None:
1176
1177
                inl_out = io.BytesIO()
                inl_srf = cairo.ImageSurface(cairo.FORMAT_ARGB32,
Pietro Battiston's avatar
Pietro Battiston committed
1178
1179
                                             output_size[0],
                                             output_size[1])
1180
1181
1182
1183
1184
1185
                inl_cr = cairo.Context(inl_srf)
                inl_cr.set_source_surface(srf, 0, 0)
                inl_cr.paint()
                inl_srf.write_to_png(inl_out)
                del inl_srf
                img = IPython.display.Image(data=inl_out.getvalue())
1186
            srf.finish()
1187
            if output_file is not None:
1188
                if isinstance(output_file, (str, unicode)):
1189
1190
1191
1192
                    ofile, auto_fmt = open_file(output_file, mode="wb")
                else:
                    ofile = output_file
                ofile.write(out.getvalue())
1193
                if isinstance(output_file, (str, unicode)):
1194
                    ofile.close()
1195
            IPython.display.display(img)
1196
        del srf
Tiago Peixoto's avatar
Tiago Peixoto committed
1197
        return pos
1198
1199
1200
1201
1202


def adjust_default_sizes(g, geometry, vprops, eprops, force=False):
    if "size" not in vprops or force:
        A = geometry[0] * geometry[1]
Tiago Peixoto's avatar
Tiago Peixoto committed
1203
1204
        N = max(g.num_vertices(), 1)
        vprops["size"] = np.sqrt(A / N) / 3.5
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

    if "pen_width" not in vprops or force:
        size = vprops["size"]
        if isinstance(vprops["size"], PropertyMap):
            size = vprops["size"].fa.mean()
        vprops["pen_width"] = size / 10
        if "pen_width" not in eprops or force:
            eprops["pen_width"] = size / 10
        if "marker_size" not in eprops or force:
            eprops["marker_size"] = size * 0.8


def scale_ink(scale, vprops, eprops):
    if "size" not in vprops:
        vprops["size"] = _vdefaults["size"]
    if "pen_width" not in vprops:
        vprops["pen_width"] = _vdefaults["pen_width"]
    if "font_size" not in vprops:
        vprops["font_size"] = _vdefaults["font_size"]
    if "pen_width" not in eprops:
        eprops["pen_width"] = _edefaults["pen_width"]
    if "marker_size" not in eprops:
        eprops["marker_size"] = _edefaults["marker_size"]
1228
1229
1230
1231
    if "font_size" not in eprops:
        eprops["font_size"] = _edefaults["font_size"]
    if "text_distance" not in eprops:
        eprops["text_distance"] = _edefaults["text_distance"]
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

    for props in [vprops, eprops]:
        if isinstance(props["pen_width"], PropertyMap):
            props["pen_width"].fa *= scale
        else:
            props["pen_width"] *= scale
    if isinstance(vprops["size"], PropertyMap):
        vprops["size"].fa *= scale
    else:
        vprops["size"] *= scale
    if isinstance(vprops["font_size"], PropertyMap):
        vprops["font_size"].fa *= scale
    else:
        vprops["font_size"] *= scale
    if isinstance(eprops["marker_size"], PropertyMap):
        eprops["marker_size"].fa *= scale
    else:
        eprops["marker_size"] *= scale
1250
1251
1252
1253
1254
1255
1256
1257
    if isinstance(eprops["font_size"], PropertyMap):
        eprops["font_size"].fa *= scale
    else:
        eprops["font_size"] *= scale
    if isinstance(eprops["text_distance"], PropertyMap):
        eprops["text_distance"].fa *= scale
    else:
        eprops["text_distance"] *= scale
1258
1259
1260

def get_bb(g, pos, size, pen_width, size_scale=1, text=None, font_family=None,
           font_size=None, cr=None):
1261
    size = size.fa if isinstance(size, PropertyMap) else size
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
    pen_width = pen_width.fa if isinstance(pen_width, PropertyMap) else pen_width
    pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
    if text is not None and text != "":
        if not isinstance(size, PropertyMap):
            uniform = (not isinstance(font_size, PropertyMap) and
                       not isinstance(font_family, PropertyMap))
            size = np.ones(len(pos_x.fa)) * size
        else:
            uniform = False
        for i, v in enumerate(g.vertices()):
            ff = font_family[v] if isinstance(font_family, PropertyMap) \
               else font_family
            cr.select_font_face(ff)
            fs = font_size[v] if isinstance(font_family, PropertyMap) \
               else font_size
1277
1278
            if not isinstance(font_size, PropertyMap):
                cr.set_font_size(fs)
1279
            t = text[v] if isinstance(text, PropertyMap) else text
1280
            if not isinstance(t, (str, unicode)):
1281
1282
1283
1284
1285
1286
1287
                t = str(t)
            extents = cr.text_extents(t)
            s = max(extents[2], extents[3]) * 1.4
            size[i] = max(size[i] * size_scale, s) / size_scale
            if uniform:
                size[:] = size[i]
                break
1288
    sl = label_self_loops(g)
1289
    slm = sl.fa.max() * 0.75 if g.num_edges() > 0 else 0
1290
    delta = (size * size_scale * (slm + 1)) / 2 + pen_width * 2
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    x_range = [pos_x.fa.min(), pos_x.fa.max()]
    y_range = [pos_y.fa.min(), pos_y.fa.max()]
    x_delta = [x_range[0] - (pos_x.fa - delta).min(),
               (pos_x.fa + delta).max() - x_range[1]]
    y_delta = [y_range[0] - (pos_y.fa - delta).min(),
               (pos_y.fa + delta).max() - y_range[1]]
    return x_range, y_range, x_delta, y_delta


def fit_to_view(g, pos, geometry, size, pen_width, M=None, text=None,
1301
                font_family=None, font_size=None, pad=0.95, cr=None):
1302
1303
    if g.num_vertices() == 0:
        return [0, 0], 1
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
    if M is not None:
        pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
        P = np.zeros((2, len(pos_x.fa)))
        P[0, :] = pos_x.fa
        P[1, :] = pos_y.fa
        T = np.zeros((2, 2))
        O = np.zeros(2)
        T[0, 0], T[1, 0], T[0, 1], T[1, 1], O[0], O[1] = M
        P = np.dot(T, P)
        P[0] += O[0]
        P[1] += O[1]
        pos_x.fa = P[0, :]
        pos_y.fa = P[1, :]
        pos = group_vector_property([pos_x, pos_y])
    x_range, y_range, x_delta, y_delta = get_bb(g, pos, size, pen_width,
                                                1, text, font_family,
                                                font_size, cr)
1321
1322
1323
1324
1325
1326
1327
1328
    dx = (x_range[1] - x_range[0])
    dy = (y_range[1] - y_range[0])
    if dx == 0:
        dx = 1
    if dy == 0:
        dy = 1
    zoom_x = (geometry[0] - sum(x_delta)) / dx
    zoom_y = (geometry[1] - sum(y_delta)) / dy
1329
1330
1331
1332
1333
    if np.isnan(zoom_x) or np.isinf(zoom_x) or zoom_x == 0:
        zoom_x = 1
    if np.isnan(zoom_y) or np.isinf(zoom_y) or zoom_y == 0:
        zoom_y = 1
    zoom = min(zoom_x, zoom_y) * pad
1334
1335
    empty_x = (geometry[0] - sum(x_delta)) - dx * zoom
    empty_y = (geometry[1] - sum(y_delta)) - dy * zoom
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
    offset = [-x_range[0] * zoom + empty_x / 2 + x_delta[0],
              -y_range[0] * zoom + empty_y / 2 + y_delta[0]]
    return offset, zoom


def transform_scale(M, scale):
    p = M.transform_distance(scale / np.sqrt(2),
                             scale / np.sqrt(2))
    return np.sqrt(p[0] ** 2 + p[1] ** 2)

1346
1347
def get_hierarchy_control_points(g, t, tpos, beta=0.8, cts=None, is_tree=True,
                                 max_depth=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1348
    r"""Return the Bézier spline control points for the edges in ``g``, given the hierarchical structure encoded in graph `t`.
1349
1350
1351
1352
1353
1354
1355
1356
1357

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be drawn.
    t : :class:`~graph_tool.Graph`
        Directed graph containing the hierarchy of ``g``. It must be a directed
        tree with a single root. The direction of the edges point from the root
        to the leaves, and the vertices in ``t`` with index in the range
Tiago Peixoto's avatar
Tiago Peixoto committed
1358
        :math:`[0, N-1]`, with :math:`N` being the number of vertices in ``g``,
1359
1360
1361
1362
        must correspond to the respective vertex in ``g``.
    tpos : :class:`~graph_tool.PropertyMap`
        Vector-valued vertex property map containing the x and y coordinates of
        the vertices in graph ``t``.
1363
    beta : ``float`` (optional, default: ``0.8`` or :class:`~graph_tool.PropertyMap`)
1364
        Edge bundling strength. For ``beta == 0`` the edges are straight lines,
1365
1366
1367
        and for ``beta == 1`` they strictly follow the hierarchy. This can be
        optionally an edge property map, which specified a different bundling
        strength for each edge.
1368
1369
1370
    cts : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map of type ``vector<double>`` where the control points
        will be stored.
1371
1372
1373
    is_tree : ``bool`` (optional, default: ``True``)
        If ``True``, ``t`` must be a directed tree, otherwise it can be any
        connected graph.
1374
1375
1376
    max_depth : ``int`` (optional, default: ``None``)
        If supplied, only the first ``max_depth`` bottom levels of the hierarchy
        will be used.
1377

1378
1379
1380
1381

    Returns
    -------

1382
    cts : :class:`~graph_tool.PropertyMap`
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
        Vector-valued edge property map containing the Bézier spline control
        points for the edges in ``g``.

    Notes
    -----
    This is an implementation of the edge-bundling algorithm described in
    [holten-hierarchical-2006]_.


    Examples
    --------
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    .. testsetup:: nested_cts

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: nested_cts

       >>> g = gt.collection.data["netscience"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g.purge_vertices()
1404
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
1405
       >>> t = gt.get_hierarchy_tree(state)[0]
1406
1407
1408
       >>> tpos = pos = gt.radial_tree_layout(t, t.vertex(t.num_vertices() - 1), weighted=True)
       >>> cts = gt.get_hierarchy_control_points(g, t, tpos)
       >>> pos = g.own_property(tpos)
1409
       >>> b = state.levels[0].b
Tiago Peixoto's avatar
Tiago Peixoto committed
1410
1411
1412
       >>> shape = b.copy()
       >>> shape.a %= 14
       >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts,
1413
1414
1415
1416
1417
       ...               edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.pdf")
       <...>

    .. testcleanup:: nested_cts

Tiago Peixoto's avatar
Tiago Peixoto committed
1418
       gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts, edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.png")
1419
1420
1421
1422
1423
1424
1425

    .. figure:: netscience_nested_mdl.*
       :align: center

       Block partition of a co-authorship network, which minimizes the description
       length of the network according to the nested (degree-corrected) stochastic blockmodel.

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436


    References
    ----------

    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

1437
1438
1439
1440
    if cts is None:
        cts = g.new_edge_property("vector<double>")
    if cts.value_type() != "vector<double>":
        raise ValueError("cts property map must be of type 'vector<double>' not '%s' " % cts.value_type())
1441
1442
1443
1444

    u = GraphView(g, directed=True)
    tu = GraphView(t, directed=True)

1445
1446
1447
1448
1449
    if not isinstance(beta, PropertyMap):
        beta = u.new_edge_property("double", beta)
    else:
        beta = beta.copy("double")

1450
1451
1452
    if max_depth is None:
        max_depth = t.num_vertices()

1453
    tu = GraphView(tu, skip_vfilt=True)
1454
    tpos = tu.own_property(tpos)
1455
1456
    libgraph_tool_draw.get_cts(u._Graph__graph,
                               tu._Graph__graph,
1457
1458
                               _prop("v", tu, tpos),
                               _prop("e", u, beta),
1459
                               _prop("e", u, cts),
1460
                               is_tree, max_depth)
1461
    return cts
1462
1463
1464
1465
1466
1467
1468

#
# The functions and classes below depend on GTK
# =============================================
#

try:
1469
1470
    import gi
    gi.require_version('Gtk', '3.0')
1471
    from gi.repository import Gtk, Gdk, GdkPixbuf
1472
    from gi.repository import GObject as gobject
1473
1474
    from .gtk_draw import *
except (ImportError, RuntimeError) as e:
1475
    msg = "Error importing Gtk module: %s; GTK+ drawing will not work." % str(e)
1476
    warnings.warn(msg, RuntimeWarning)
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

def gen_surface(name):
    fobj, fmt = open_file(name)
    if fmt in ["png", "PNG"]:
        sfc = cairo.ImageSurface.create_from_png(fobj)
        return sfc
    else:
        pixbuf = GdkPixbuf.Pixbuf.new_from_file(name)
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, pixbuf.get_width(),
                                     pixbuf.get_height())
        cr = cairo.Context(surface)
        Gdk.cairo_set_source_pixbuf(cr, pixbuf, 0, 0)
        cr.paint()
        return surface
1491
#
1492
1493
# matplotlib
# ==========
1494
#
1495

1496
1497
1498
1499
1500
1501
1502
class GraphArtist(matplotlib.artist.Artist):
    """:class:`matplotlib.artist.Artist` specialization that draws
       :class:`graph_tool.Graph` instances.

    .. warning::

        Only Cairo-based backends are supported.
1503
1504
1505
1506

    """

    def __init__(self, g, pos, vprops, eprops, vorder, eorder,
1507
                nodesfirst, ax=None, **kwargs):
1508
1509
1510
1511
1512
1513
1514
1515
        matplotlib.artist.Artist.__init__(self)
        self.g = g
        self.pos = pos
        self.vprops = vprops
        self.eprops = eprops
        self.vorder = vorder
        self.eorder = eorder
        self.nodesfirst = nodesfirst
1516
        self.ax = ax
1517
1518
1519
1520
1521
        self.kwargs = kwargs

    def draw(self, renderer):
        if not isinstance(renderer, matplotlib.backends.backend_cairo.RendererCairo):
            raise NotImplementedError("graph plotting is supported only on Cairo backends")
1522
1523

        ctx = renderer.gc.ctx
1524
1525
1526
1527

        if not isinstance(ctx, cairo.Context):
            ctx = _UNSAFE_cairocffi_context_to_pycairo(ctx)

1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
        ctx.save()

        if self.ax is not None:
            m = self.ax.transData.get_affine().get_matrix()
            m = cairo.Matrix(m[0,0], m[1, 0], m[0, 1], m[1, 1], m[0, 2], m[1,2])
            ctx.set_matrix(m)

            l, r = self.ax.get_xlim()
            b, t = self.ax.get_ylim()
            ctx.rectangle(l, b, r-l, t-b)
            ctx.clip()

1540
1541
        # flip y direction
        x, y = ungroup_vector_property(self.pos, [0, 1])
1542
1543
        l, t, r, b = ctx.clip_extents()
        y.fa = b + t - y.fa
1544
        pos = group_vector_property([x, y])
1545

1546
        cairo_draw(self.g, pos, ctx, self.vprops, self.eprops,
1547
1548
1549
                   self.vorder, self.eorder, self.nodesfirst, self.kwargs)

        ctx.restore()
1550
1551
1552
1553
1554
1555
1556


#
# Drawing hierarchies
# ===================
#

1557
1558
def draw_hierarchy(state, pos=None, layout="radial", beta=0.8, node_weight=None,
                   vprops=None, eprops=None, hvprops=None, heprops=None,
1559
1560
                   subsample_edges=None, deg_order=True, deg_size=True,
                   vsize_scale=1, hsize_scale=1, hshortcuts=0, hide=0,
1561
                   bip_aspect=1., empty_branches=True, **kwargs):
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
    r"""Draw a nested block model state in a circular hierarchy layout with edge
    bundling.

    Parameters
    ----------
    state : :class:`~graph_tool.community.NestedBlockState`
        Nested block state to be drawn.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If supplied, this specifies a vertex property map with the positions of
        the vertices in the layout.
    layout : ``str`` or :class:`~graph_tool.PropertyMap` (optional, default: ``"radial"``)
        If ``layout == "radial"`` :func:`~graph_tool.draw.radial_tree_layout`
        will be used. If ``layout == "sfdp"``, the hierarchy tree will be
1575
1576
        positioned using :func:`~graph_tool.draw.sfdp_layout`. If ``layout ==
        "bipartite"`` a bipartite layout will be used. If instead a
1577
1578
1579
1580
        :class:`~graph_tool.PropertyMap` is provided, it must correspond to the
        position of the hierarchy tree.
    beta : ``float`` (optional, default: ``.8``)
        Edge bundling strength.
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
    vprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties. Individual properties may also be
        given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    eprops : dict (optional, default: ``None``)
        Dictionary with the edge properties. Individual properties may also be
        given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hvprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties for the *hierarchy tree*.
        Individual properties may also be given via the ``hvertex_<prop-name>``
        parameters, where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
    heprops : dict (optional, default: ``None``)
        Dictionary with the edge properties for the *hierarchy tree*. Individual
        properties may also be given via the ``hedge_<prop-name>`` parameters,
        where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
1601
1602
1603
1604
1605
1606
    subsample_edges : ``int`` or list of :class:`~graph_tool.Edge` instances (optional, default: ``None``)
        If provided, only this number of random edges will be drawn. If the
        value is a list, it should include the edges that are to be drawn.
    deg_order : ``bool`` (optional, default: ``True``)
        If ``True``, the vertices will be ordered according to degree inside
        each group.
1607
1608
1609
    deg_size : ``bool`` (optional, default: ``True``)
        If ``True``, the (total) node degrees will be used for the default
        vertex sizes..
1610
    vsize_scale : ``float`` (optional, default: ``1.``)
1611
        Multiplicative factor for the default vertex sizes.
1612
    hsize_scale : ``float`` (optional, default: ``1.``)
1613
        Multiplicative factor for the default sizes of the hierarchy nodes.
1614
1615
1616
1617
1618
    hshortcuts : ``int`` (optional, default: ``0``)
        Include shortcuts to the number of upper layers in the hierarchy
        determined by this parameter.
    hide : ``int`` (optional, default: ``0``)
        Hide upper levels of the hierarchy.
1619
1620
    bip_aspect : ``float`` (optional, default: ``1.``)
        If ``layout == "bipartite"``, this will define the aspect ratio of layout.
1621
    empty_branches : ``bool`` (optional, default: ``False``)
1622
1623
        If ``empty_branches == False``, dangling branches at the upper layers
        will be pruned.
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
    vertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``vertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``vprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    edge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``edge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``eprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
    hvertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hvertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``hvprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hedge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hedge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``heprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
1642
    **kwargs :
1643
1644
        All remaining keyword arguments will be passed to the
        :func:`~graph_tool.draw.graph_draw` function.
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the vertices in the layout.
    t : :class:`~graph_tool.Graph`
        This is a the hierarchy tree used in the layout.
    tpos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the hierarchy tree in the layout.

    Examples
    --------
    .. testsetup:: draw_hierarchy

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: draw_hierarchy

       >>> g = gt.collection.data["celegansneural"]
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
       >>> gt.draw_hierarchy(state, output="celegansneural_nested_mdl.pdf")
       (...)

    .. testcleanup:: draw_hierarchy

       gt.draw_hierarchy(state, output="celegansneural_nested_mdl.png")

    .. figure:: celegansneural_nested_mdl.*
       :align: center

       Hierarchical block partition of the C. elegans neural network, which
       minimizes the description length of the network according to the nested
       (degree-corrected) stochastic blockmodel.


    References
    ----------
    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

    g = state.g

1693
1694
    overlap = state.levels[0].overlap
    if overlap:
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
        ostate = state.levels[0]
        bv, bcin, bcout, bc = ostate.get_overlap_blocks()
        be = ostate.get_edge_blocks()
        orig_state = state
        state = state.copy()
        b = ostate.get_majority_blocks()
        state.levels[0] = BlockState(g, b=b)
    else:
        b = state.levels[0].b

    if subsample_edges is not None:
        emask = g.new_edge_property("bool", False)
        if isinstance(subsample_edges, int):
            eidx = g.edge_index.copy("int").fa.copy()
            numpy.random.shuffle(eidx)
            emask = g.new_edge_property("bool")
            emask.a[eidx[:subsample_edges]] = True
        else:
            for e in subsample_edges:
                emask[e] = True
        g = GraphView(g, efilt=emask)

1717
1718
    t, tb, vorder = get_hierarchy_tree(state,
                                       empty_branches=empty_branches)
1719
1720
1721
1722
1723
1724

    if layout == "radial":
        if not deg_order:
            vorder = None
        if pos is not None:
            x, y = ungroup_vector_property(pos, [0, 1])
1725
1726
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
1727
            angle = g.new_vertex_property("double")
1728
            angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
1729
            vorder = angle
1730
1731
1732
        if node_weight is not None:
            node_weight = t.own_property(node_weight.copy())
            node_weight.a[node_weight.a == 0] = 1
1733
        tpos = radial_tree_layout(t, root=t.vertex(t.num_vertices() - 1,
1734
                                                   use_index=False),
1735
                                  node_weight=node_weight,
1736
                                  rel_order=vorder)
1737
    elif layout == "bipartite":
1738
        tpos = get_bip_hierachy_pos(state, aspect=bip_aspect,
1739
1740
                                    node_weight=node_weight)
        tpos = t.own_property(tpos)
1741
1742
1743
1744
1745
    elif layout == "sfdp":
        if pos is None:
            tpos = sfdp_layout(t)
        else:
            x, y = ungroup_vector_property(pos, [0, 1])
1746
1747
1748
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
            K = numpy.sqrt(x.fa.std() + y.fa.std()) / 10
1749
1750
            tpos = t.new_vertex_property("vector<double>")
            for v in t.vertices():
1751
                if int(v) < g.num_vertices(True):
1752
1753
1754
1755
                    tpos[v] = [x[v], y[v]]
                else:
                    tpos[v] = [0, 0]
            pin = t.new_vertex_property("bool")
1756
            pin.a[:g.num_vertices(True)] = True
1757
1758
1759
1760
            tpos = sfdp_layout(t, K=K, pos=tpos, pin=pin, multilevel=False)
    else:
        tpos = t.own_property(layout)

1761
1762
    hvvisible = t.new_vertex_property("bool", True)
    if hide > 0:
1763
        root = t.vertex(t.num_vertices(True) - 1)
1764
1765
1766
        dist = shortest_distance(t, source=root)
        hvvisible.fa = dist.fa >= hide

1767
1768
    pos = g.own_property(tpos.copy())

1769
    cts = get_hierarchy_control_points(g, t, tpos, beta,
1770
                                       max_depth=len(state.levels) - hshortcuts)
1771

1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
    vprops_orig = vprops
    eprops_orig = eprops
    hvprops_orig = vprops
    heprops_orig = eprops
    kwargs_orig = kwargs

    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
    vprops.update(props)
    vprops.setdefault("fill_color", b)
    vprops.setdefault("color", b)
1785
    vprops.setdefault("shape", _vdefaults["shape"] if not overlap else "pie")
1786
1787
    s = max(200 / numpy.sqrt(g.num_vertices()), 5)
    vprops.setdefault("size", prop_to_size(g.degree_property_map("total"), s/5, s))
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805

    if vprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(g, pos, text_pos=True)
        vprops["text_position"] = text_pos
        vprops["text_rotation"] = angle

    self_loops = label_self_loops(g, mark_only=True)
    if self_loops.fa.max() > 0:
        parallel_distance = vprops.get("size", _vdefaults["size"])
        if isinstance(parallel_distance, PropertyMap):
            parallel_distance = parallel_distance.fa.mean()
        cts_p = position_parallel_edges(g, pos, numpy.nan,
                                        parallel_distance)
        gu = GraphView(g, efilt=self_loops)
        for e in gu.edges():
            cts[e] = cts_p[e]


1806
1807
1808
1809
1810
1811
1812
    vprops = _convert_props(vprops, "v", g, kwargs.get("vcmap", default_cm),
                            pmap_default=True)

    props, kwargs = parse_props("edge", kwargs)
    eprops.update(props)
    eprops.setdefault("control_points", cts)
    eprops.setdefault("pen_width", _edefaults["pen_width"])
1813
    eprops.setdefault("color", list(_edefaults["color"][:-1]) + [.6])
1814
    eprops.setdefault("end_marker", "arrow" if g.is_directed() else "none")
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
    eprops = _convert_props(eprops, "e", g, kwargs.get("ecmap", default_cm),
                            pmap_default=True)

    hvprops = hvprops.copy() if hvprops is not None else {}
    heprops = heprops.copy() if heprops is not None else {}

    props, kwargs = parse_props("hvertex", kwargs)
    hvprops.update(props)

    blue = list(color_converter.to_rgba("#729fcf"))
    blue[-1] = .6
    hvprops.setdefault("fill_color", blue)
    hvprops.setdefault("color", [1, 1, 1, 0])
    hvprops.setdefault("shape", "square")
    hvprops.setdefault("size", 10)

1831
1832
1833
1834
1835
    if hvprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(t, tpos, text_pos=True)
        hvprops["text_position"] = text_pos
        hvprops["text_rotation"] = angle

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
    hvprops = _convert_props(hvprops, "v", t, kwargs.get("vcmap", default_cm),
                             pmap_default=True)

    props, kwargs = parse_props("hedge", kwargs)
    heprops.update(props)

    heprops.setdefault("color", blue)
    heprops.setdefault("end_marker", "arrow")
    heprops.setdefault("marker_size", 8.)
    heprops.setdefault("pen_width", 1.)

    heprops = _convert_props(heprops, "e", t, kwargs.get("ecmap", default_cm),
                             pmap_default=True)
1849

1850
1851
    vcmap = kwargs.get("vcmap", default_cm)
    ecmap = kwargs.get("ecmap", vcmap)
1852
1853
1854

    B = state.levels[0].B

1855
    if overlap and "pie_fractions" not in vprops:
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
        vprops["pie_fractions"] = bc.copy("vector<double>")
        if "pie_colors" not in vprops:
            vertex_pie_colors = g.new_vertex_property("vector<double>")
            nodes = defaultdict(list)
            def conv(k):
                clrs = [vcmap(r / (B - 1) if B > 1 else 0) for r in k]
                return [item for l in clrs for item in l]
            map_property_values(bv, vertex_pie_colors, conv)
            vprops["pie_colors"] = vertex_pie_colors

    gradient = eprops.get("gradient", None)
1867
1868
    if gradient is None:
        gradient = g.new_edge_property("double")
1869
        gradient = group_vector_property([gradient])
1870
1871
        ecolor = eprops.get("ecolor", _edefaults["color"])
        eprops["gradient"] = gradient
1872
        if overlap:
1873
            for e in g.edges():                       # ******** SLOW *******
1874
                r, s = be[e]
1875
                if not g.is_directed() and e.source() > e.target():
1876
1877
1878
                    r, s = s, r
                gradient[e] = [0] + list(vcmap(r / (B - 1))) + \
                              [1] + list(vcmap(s / (B - 1)))
1879
1880
1881
1882
                if isinstance(ecolor, PropertyMap):
                    gradient[e][4] = gradient[e][9] = ecolor[e][3]
                else:
                    gradient[e][4] = gradient[e][9] = ecolor[3]
1883
1884
1885


    t_orig = t
1886
    t = GraphView(t,
1887
                  vfilt=lambda v: int(v) >= g.num_vertices(True) and hvvisible[v])
1888

1889
1890
    t_vprops = {}
    t_eprops = {}
1891

1892
1893
1894
1895
1896
1897
1898
    props = []
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = (vprops.get(k, None), hvprops.get(k, None))
        props.append(t_vprops[k])
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = (eprops.get(k, None), heprops.get(k, None))
        props.append(t_eprops[k])
1899

1900
1901
1902
    props.append((pos, tpos))
    props.append((g.vertex_index, tb))
    props.append((b, None))
1903

1904
    u, props = graph_union(g, t, props=props)
1905

1906
1907
1908
1909
1910
1911
1912
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = props.pop(0)
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = props.pop(0)
    pos = props.pop(0)
    tb = props.pop(0)
    b = props.pop(0)
1913
1914
1915

    def update_cts(widget, gg, picked, pos, vprops, eprops):
        vmask = gg.vertex_index.copy("int")
1916
        u = GraphView(gg, directed=False, vfilt=vmask.fa < g.num_vertices(True))
1917
        cts = eprops["control_points"]
1918
        get_hierarchy_control_points(u, t_orig, pos, beta, cts=cts,
1919
                                     max_depth=len(state.levels) - hshortcuts)
1920
1921
1922

    def draw_branch(widget, gg, key_id, picked, pos, vprops, eprops):
        if key_id == ord('b'):
1923
1924
            if picked is not None and not isinstance(picked, PropertyMap) and int(picked) > g.num_vertices(True):
                p = shortest_path(t_orig, source=t_orig.vertex(t_orig.num_vertices(True) - 1),
1925
1926
1927
1928
1929
1930
1931
                                  target=picked)[0]
                l = len(state.levels) - max(len(p), 1)

                bstack = state.get_bstack()
                bs = [s.vp["b"].a for s in bstack[:l+1]]
                bs[-1][:] = 0

1932
                if not overlap:
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
                    b = state.project_level(l).b
                    u = GraphView(g, vfilt=b.a == tb[picked])
                    u.vp["b"] = state.levels[0].b
                    u = Graph(u, prune=True)
                    b = u.vp["b"]
                    bs[0] = b.a
                else:
                    be = orig_state.project_level(l).get_edge_blocks()
                    emask = g.new_edge_property("bool")
                    for e in g.edges():
                        rs = be[e]
                        if rs[0] == tb[picked] and rs[1] == tb[picked]:
                            emask[e] = True
1946
1947
1948
                    u = GraphView(g, efilt=emask)
                    d = u.degree_property_map("total")
                    u = GraphView(u, vfilt=d.fa > 0)
1949
1950
1951
1952
1953
1954
1955
                    u.ep["be"] = orig_state.levels[0].get_edge_blocks()
                    u = Graph(u, prune=True)
                    be = u.ep["be"]
                    s = OverlapBlockState(u, b=be)
                    bs[0] = s.b.a.copy()

                nstate = NestedBlockState(u, bs=bs,
1956
                                          base_type=type(state.levels[0]),
1957
1958
                                          deg_corr=state.deg_corr)

1959
1960
1961
1962
1963
1964
                kwargs_ = kwargs_orig.copy()
                if "no_main" in kwargs_:
                    del kwargs_["no_main"]
                draw_hierarchy(nstate, beta=beta, vprops=vprops_orig,
                               eprops=eprops_orig, hvprops=hvprops_orig,
                               heprops=heprops_orig,
1965
                               subsample_edges=subsample_edges,
1966
1967
1968
                               deg_order=deg_order, empty_branches=False,
                               no_main=True, **kwargs_)

1969
        if key_id == ord('r'):
1970
1971
1972
1973
1974
1975
1976
            if layout == "radial":
                x, y = ungroup_vector_property(pos, [0, 1])
                x.fa -= x.fa.mean()
                y.fa -= y.fa.mean()
                angle = gg.new_vertex_property("double")
                angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
                tpos = radial_tree_layout(t_orig,
1977
                                          root=t_orig.vertex(t_orig.num_vertices(True) - 1),
1978
1979
1980
                                          rel_order=angle)
                gg.copy_property(tpos, pos)

1981
1982
1983
1984
1985
1986
            update_cts(widget, gg, picked, pos, vprops, eprops)

            if widget.vertex_matrix is not None:
                widget.vertex_matrix.update()
            widget.picked = None
            widget.selected.fa = False
1987
1988
1989

            widget.fit_to_window()
            widget.regenerate_surface(reset=True)
1990
1991
            widget.queue_draw()

1992
1993
1994
1995
    if kwargs.get("output", None) is None:
        kwargs["layout_callback"] = update_cts
        kwargs["key_press_callback"] = draw_branch

1996
1997
1998
    pos = graph_draw(u, pos, vprops=t_vprops, eprops=t_eprops, vorder=vorder,
                     **kwargs)

1999
2000
    if isinstance(pos, PropertyMap):
        pos = g.own_property(pos)
For faster browsing, not all history is shown. View entire blame