__init__.py 32.5 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Important functions for assessing graph topology
--------------------------------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
33
   isomorphism
34
35
   subgraph_isomorphism
   mark_subgraph
36
37
38
39
40
41
   min_spanning_tree
   dominator_tree
   topological_sort
   transitive_closure
   label_components
   label_biconnected_components
42
   is_planar
43
44
45

Contents
++++++++
46

47
48
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. dl_import import dl_import
50
dl_import("import libgraph_tool_topology")
51

52
from .. core import _prop, Vector_int32_t, _check_prop_writable, \
53
54
55
56
57
     _check_prop_scalar,  _check_prop_vector, Graph, PropertyMap
import random, sys, numpy, weakref
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
           "min_spanning_tree", "dominator_tree", "topological_sort",
           "transitive_closure", "label_components",
58
59
           "label_biconnected_components", "shortest_distance",
           "shortest_path", "is_planar"]
60

Tiago Peixoto's avatar
Tiago Peixoto committed
61

62
def isomorphism(g1, g2, isomap=False):
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

81
    """
82
83
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
84
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
85
                             _prop("v", g1, imap))
86
87
88
89
90
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
91

92
def subgraph_isomorphism(sub, g, max_n=0, random=True):
93
    r"""
94
95
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
96

97
98
99
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

100
101
102
103
104
105
106
107
108
109
110
111
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
    >>> print len(vm)
Tiago Peixoto's avatar
Tiago Peixoto committed
112
    93
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    >>> for i in xrange(len(vm)):
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a *= 1.5
    >>> ewidth.a += 0.5
    >>> gt.graph_draw(g, vcolor=vmask, ecolor=emask, penwidth=ewidth,
    ...               output="subgraph-iso-embed.png")
    <...>
    >>> gt.graph_draw(sub, output="subgraph-iso.png")
    <...>

    .. image:: subgraph-iso.png
    .. image:: subgraph-iso-embed.png

    *Left:* Subgraph searched, *Right:* One isomorphic subgraph found in main
     graph.

    Notes
    -----
139
140
141
142
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
143
144
145

    References
    ----------
146
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
147
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
148
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
149
150
151
152

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
153
154
    vlabels=(None, None)
    elabels=(None, None)
155
156
    vmaps = []
    emaps = []
157
158
159
160
    if random:
        seed = numpy.random.randint(0, sys.maxint)
    else:
        seed = 42
161
162
163
164
165
166
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
167
                                vmaps, emaps, max_n, seed)
168
169
170
171
172
    for i in xrange(len(vmaps)):
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
173

174
175
176
177
178
179
180
181
182
183
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
184
    `sub`.
185
    """
186
    if vmask is None:
187
        vmask = g.new_vertex_property("bool")
188
    if emask is None:
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
203

Tiago Peixoto's avatar
Tiago Peixoto committed
204

205
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
206
207
208
209
210
211
212
213
214
215
216
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: None)
217
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        is used. Otherwise, Kruskal's algorithm is used.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
235
    >>> from numpy.random import seed, random
236
    >>> seed(42)
237
238
239
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
240
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
241
    >>> tree = gt.min_spanning_tree(g, weights=weight)
Tiago Peixoto's avatar
Tiago Peixoto committed
242
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_orig.png")
243
244
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
245
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_min_span_tree.png")
246
247
248
249
    <...>


    .. image:: triang_orig.png
Tiago Peixoto's avatar
Tiago Peixoto committed
250
251
252
        :width: 400px
    .. image:: triang_min_span_tree.png
        :width: 400px
253
254

    *Left:* Original graph, *Right:* The minimum spanning tree.
255
256
257
258
259

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
260
261
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
262
263
264
265
266
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
267
    if tree_map is None:
268
269
270
271
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
287
    return tree_map
288

Tiago Peixoto's avatar
Tiago Peixoto committed
289

Tiago Peixoto's avatar
Tiago Peixoto committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
322
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
323
324
    >>> dom = gt.dominator_tree(g, root[0])
    >>> print dom.a
Tiago Peixoto's avatar
Tiago Peixoto committed
325
326
327
328
    [ 0  0 72  0  0  0  0  0  0  0  0  0  0  0 21  0  0  0  0  0  0  3  0  0  0
      0  0  0  0  0  0 41  0  0  0  0  0  0  0  0  0 11  0  0  0  0  0  0  0  0
      0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  3  0  0
      0  0  0  0  0  2  0  0  0  0  0  0  0 80  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
329
330
331

    References
    ----------
332
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
333
334

    """
335
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
336
337
338
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
339
340
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
341
        raise ValueError("dominator tree requires a directed graph.")
342
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
343
344
345
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
346

Tiago Peixoto's avatar
Tiago Peixoto committed
347

348
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
    >>> print sort
Tiago Peixoto's avatar
Tiago Peixoto committed
370
371
    [19 27  1  7  0 23  8 16  2 15 24 12  3  4 22  5  6  9 10 11 18 13 21 14 20
     17 25 26 28 29]
Tiago Peixoto's avatar
Tiago Peixoto committed
372
373
374

    References
    ----------
375
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
376
377
378
379
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

380
381
382
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
383
    return numpy.array(topological_order)
384

Tiago Peixoto's avatar
Tiago Peixoto committed
385

386
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
407
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
408
409
410
411
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

412
413
414
415
416
417
418
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
419

420
421
def label_components(g, vprop=None, directed=None):
    """
422
    Label the components to which each vertex in the graph belongs. If the
423
424
425
426
    graph is directed, it finds the strongly connected components.

    Parameters
    ----------
427
    g : :class:`~graph_tool.Graph`
428
429
        Graph to be used.

430
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
431
432
433
434
435
436
437
438
439
        Vertex property to store the component labels. If none is supplied, one
        is created.

    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
440
    comp : :class:`~graph_tool.PropertyMap`
441
442
443
444
445
446
447
        Vertex property map with component labels.

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

448
    The algorithm runs in :math:`O(V + E)` time.
449
450
451

    Examples
    --------
452
453
454
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
455
456
    >>> comp = gt.label_components(g)
    >>> print comp.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
457
458
459
    [0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 0
     0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0 0 0 1 0 0 0
     1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0]
460
461
    """

462
    if vprop is None:
463
464
465
466
467
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

468
469
470
471
    try:
        if directed is not None:
            g.stash_filter(directed=True)
            g.set_directed(directed)
472

473
474
475
476
477
        libgraph_tool_topology.\
              label_components(g._Graph__graph, _prop("v", g, vprop))
    finally:
        if directed is not None:
            g.pop_filter(directed=True)
478
479
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
480

481
def label_biconnected_components(g, eprop=None, vprop=None):
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
530
    >>> seed(43)
531
532
533
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
    >>> comp, art, nc = gt.label_biconnected_components(g)
    >>> print comp.a
Tiago Peixoto's avatar
Tiago Peixoto committed
534
535
536
    [1 0 0 0 2 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0
     1 0 1 3 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0
     0 0 0 0 0 0 0 0 0 0 1 3 1 0 2 1 0 0 0 0 0 2 0 0 0 2]
537
538
539
540
541
542
543
544
    >>> print art.a
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
    >>> print nc
    4

    """
545

546
    if vprop is None:
547
        vprop = g.new_vertex_property("bool")
548
    if eprop is None:
549
550
551
552
553
554
555
556
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

    g.stash_filter(directed=True)
557
558
559
560
561
562
563
    try:
        g.set_directed(False)
        nc = libgraph_tool_topology.\
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
    finally:
        g.pop_filter(directed=True)
564
    return eprop, vprop, nc
565

Tiago Peixoto's avatar
Tiago Peixoto committed
566

567
def shortest_distance(g, source=None, weights=None, max_dist=None,
568
569
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
570
571
572
573
574
575
576
577
578
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
579
        Source vertex of the search. If unspecified, the all pairs shortest
580
581
582
583
584
585
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
586
        are searched. This parameter has no effect if source is None.
587
588
589
590
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
591
592
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
593
594
595
596
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
597
598
599
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
    >>> print dist.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    [         0          3          5          4 2147483647          1
              6          3          4          4          5          4
              4          4          4          4          1          3
              3          1          5          3 2147483647          4
              2          5          5 2147483647          5          5
              4          3          3          2          4          4
              4          4          5          5 2147483647 2147483647
              4          4          3          5          3          4
     2147483647          3          2          4          5          5
              3          3          3          5          4 2147483647
              3          4          5          4          2 2147483647
              4          3          2          4          2 2147483647
              3          3          4          3          4          5
              2          3          6          4          4 2147483647
              6          4          5          1          4          5
              3          4          4          2          4          6
              3          4          2          4]
644
645
    >>> dist = gt.shortest_distance(g)
    >>> print array(dist[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    [         0          3          5          4 2147483647          1
              6          3          4          4          5          4
              4          4          4          4          1          3
              3          1          5          3 2147483647          4
              2          5          5 2147483647          5          5
              4          3          3          2          4          4
              4          4          5          5 2147483647 2147483647
              4          4          3          5          3          4
     2147483647          3          2          4          5          5
              3          3          3          5          4 2147483647
              3          4          5          4          2 2147483647
              4          3          2          4          2 2147483647
              3          3          4          3          4          5
              2          3          6          4          4 2147483647
              6          4          5          1          4          5
              3          4          4          2          4          6
              3          4          2          4]
663
664
665
666
667

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
668
669
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
670
671
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
672
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
673
674
675
676
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

677
    if weights is None:
678
679
680
681
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

682
683
    if dist_map is None:
        if source is not None:
684
685
686
687
688
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
689
    if source is not None:
690
691
692
693
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

694
    if max_dist is None:
695
696
        max_dist = 0

697
    if directed is not None:
698
699
700
701
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
702
        if source is not None:
703
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
704
705
706
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
707
                                             _prop("v", g, pmap),
708
709
710
711
712
713
714
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
715
        if directed is not None:
716
            g.pop_filter(directed=True)
717
    if source is not None and pred_map:
718
719
720
721
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
722

723
724
725
726
727
728
729
730
731
732
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
733
    target : :class:`~graph_tool.Vertex`
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
    >>> print [str(v) for v in vlist]
Tiago Peixoto's avatar
Tiago Peixoto committed
766
    ['10', '66', '46', '266', '101', '143', '91', '275', '82', '11']
767
    >>> print [str(e) for e in elist]
Tiago Peixoto's avatar
Tiago Peixoto committed
768
    ['(10,66)', '(66,46)', '(46,266)', '(266,101)', '(101,143)', '(143,91)', '(91,275)', '(275,82)', '(82,11)']
769
770
771
772
773

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
774
775
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
776
777
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
778
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
779
780
    """

781
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
782
783
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
784

Tiago Peixoto's avatar
Tiago Peixoto committed
785
    if pred_map[target] == int(target):  # no path to source
786
787
788
789
790
        return [], []

    vlist = [target]
    elist = []

791
    if weights is not None:
792
793
794
795
796
797
798
799
800
801
802
803
804
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
805
                if weights is not None:
806
807
808
809
810
811
812
813
814
815
816
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
    >>> print p
    True
    >>> print list(embed_order[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
863
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
864
865
866
867
868
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
    >>> print p
    False
    >>> g.set_edge_filter(kur, True)
869
    >>> gt.graph_draw(g, output="kuratowski.png")
870
871
872
873
874
875
876
877
878
879
    <...>

    .. figure:: kuratowski.png
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
880
881
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
906
    if embed is not None:
907
        ret.append(embed)
908
    if kur is not None:
909
910
911
912
913
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)